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Abstract

We analyze a probabilistic algorithm for matching
plane compact sets with sufficiently nice boundaries
under translations and rigid motions (rotation and
translation). Given shapes A and B, the algorithm
computes a transformation t such that with high prob-
ability the area of overlap of t(A) and B is close to
maximal. We give a time bound that does not depend
on the number of vertices in the case of polygons.

1 Introduction

Shape matching is a problem that occurs in various
areas of computer science and in various flavors. The
variant considered here comes from computer vision.

We model shapes as bounded polygonal regions in
the plane. Given two shapes A and B, as well as a
set of transformations F and a distance measure d,
we look for the transformation t ∈ F such that t(A)
and B match optimally with respect to d. Two shapes
are similar if there is a transformation f for that the
distance between t(A) and B is small.

This is a well-studied problem in the case of rigid
motions and the Hausdorff distance, if the shapes are
modeled as sets of line segments, for example. For a
survey on the topic, see [3].

We study the case where F is the set of transla-
tions or rigid motions (rotation and translation) in
the plane and the distance measure is the area of the
symmetric difference, that is the area that belongs to
exactly one of the shapes. Minimizing the area of the
symmetric difference under translations or rigid mo-
tions is the same as maximizing the area of overlap,
and that is what we will speak about from now on.
The area of overlap is a well-known similarity measure
that is insensitive to noise.

There are efficient algorithms that maximize the
area of overlap under translations. Mount et al. [9]
show that the maximal area of overlap of a simple n-
polygon with a translated simple m-polygon can be
computed in O(n2m2) time. Recently, Cheong et al.
[7] gave a general probabilistic framework that com-
putes an approximation with prespecified absolute er-
ror ε in O(m + n2

ε4 log(n)2) time for translations and
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O(m + n3

ε4 log(n)5) time for rigid motions. De Berg et
al. [6] consider the case of convex polygons and give a
O((n+m)log(n+m)) time algorithm that maximizes
the area of overlap. Alt et al. [2] give a linear time
constant factor approximation algorithm for minimiz-
ing the area of the symmetric difference under trans-
lations and homotheties (scaling and translation).

Surprisingly little is known about maximizing the
area of overlap in case of rigid motions and similari-
ties.

Here, we analyze a probabilistic algorithm that ap-
proximates the maximal area of overlap under trans-
lations and rigid motions. Given an allowable error ε
and a desired probability of success p, we show bounds
on the required number of random experiments, guar-
anteeing that the difference between approximation
and optimum is at most ε with probability at least p.

This algorithm is a special case of a probabilis-
tic algorithmic scheme for approximating an optimal
match of compact sets under a subgroup of affine
transformations. Alt and Scharf [4] analyzed an
instance of this algorithmic scheme that compares
polygonal curves under translations, rigid motions,
and similarities.

2 The Algorithm

The idea of the algorithm is to draw random points
from the shapes, to compute a transformation that
maps the points onto each other, and to keep this
transformation, called a “vote”, in mind. This is re-
peated very often; in each step, we grow our collection
of “votes” by one. Clusters of “votes” indicate trans-
formations that map large parts of the shapes onto
each other.

Now we state the algorithm for translations.
Given: shapes A and B, integer n, positive real δ.

1. Do the following experiment n times:
Draw uniformly distributed random points a ∈
A and b ∈ B. Give one “vote” to the unique
translation that maps a onto b.

2. Determine and return one of the transla-
tions whose δ-neighborhood obtained the most
“votes”.

The term δ-neighborhood refers to the maximum
norm; we identify each translation with its translation
vector and equip the translation space R2 with the
maximum norm.
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The algorithm captures the intuitive notion of
matching. Translations that many pairs of points vote
for should be “good” translations since many points
from A are mapped onto points from B. Figure 1
illustrates this idea.
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Figure 1: We compare two copies of a square un-
der translations. The area of overlap of t(A) and B
corresponds to the chance of choosing a point pair
(x, y) ∈ A×B such that y − x = t.

Now we explain the algorithm for rigid motions.
The space of rigid motions R is given as [−π, π)×R2,
equipped with the maximum norm. A point (α, t) ∈ R
denotes the rigid motion

x 7→ Mαx + t, Mα =
(

cos α − sinα
sinα cos α

)
.

For matching under rigid motions, we draw in each
step uniformly distributed an angle α and random
points a ∈ A and b ∈ B. We give one “vote” to the
unique rigid motion with counterclockwise rotation
angle α that maps a onto b, namely

x 7→ Mαx + (b−Mαa).

When speaking of transformations, we refer to trans-
lations and rigid motions.

The algorithm does not require the shapes to be
polygons; it works for measurable sets in R2, pro-
vided there is a method to draw uniformly distributed
random points from them and the density function
is Lipschitz continuous (see Section 4.3). The latter
is fulfilled, for example, if the shapes’ boundaries are
unions of piecewise differentiable simple closed curves.
The algorithm can be directly applied on bitmap data
as well.

3 Main Result

We study the transformation space with the proba-
bility distribution that is implicitly given by the ran-
dom experiment and the fact that we draw the ran-
dom points from the shapes in a uniformly distributed
way.

The distribution of “votes” in the transformation
space approximates the probability distribution that

results from the experiment; the fraction of “votes”
that fall in a set approximates its probability. The
output of the algorithm is a transformation t whose δ-
neighborhood has approximately highest probability.

The probability Pr of an event E and the density
function g are by definition related by

Pr(E) =
∫

E

g(s)ds.

If the density function is uniformly continuous and
δ is small enough, the transformations whose δ-
neighborhood have highest probability and the trans-
formations at which the density function is maximal
are the same. Then, the output is a transformation t
at which the density function is close to the maximum
with high probability.

It turns out, that in our case the density function
is the function mapping a transformation vector to
the area of overlap of the transformed shape A and B
divided by a constant.

Let µ be the Lebesgue measure on R2, which for
polygons equals the area. We always assume the
shapes not to be degenerate.

Lemma 1 The density function of the probability
distribution on the translation space that results from
the experiment is given by

f(t) =
µ(t(A) ∩B)
µ(A) µ(B)

.

In case of rigid motions, the density function is given
by

g(r) =
µ(r(A) ∩B)

2π µ(A) µ(B)
.

The main result is the following approximation the-
orem, which states that, for each allowable error ε and
each desired probability of success p, there is a num-
ber of experiments N guaranteeing approximation of
the maximal area of overlap with error at most ε and
with probability at least p.

Theorem 2 Let t∗ be a transformation that is out-
put of the algorithm and topt a transformation that
maximizes the area of overlap of topt(A) and B. Let
ε > 0 and p < 1. There are a positive real δ = O(ε)
and an integer N such that with probability at least
p

|µ(t∗(A) ∩B)− µ(topt(A) ∩B)| < ε.

if N is the number of random experiments.
In case of translations,

N = O(max{− log(1− p),− log(ε6)}/ε6).

In case of rigid motions,

N = O(max{− log(1− p),− log(ε8)}/ε8).

The constants depend on the shapes.
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A sketch of the proof is given in Section 4.4.
In the case of polygons, after having triangulated,

we can draw random points in constant time. The
runtime is bounded trivially by O(N2) for transla-
tions and by O(N3) for rigid motions, if N is the re-
quired number of experiments, since the arrangement
of δ-spheres whose center is a “vote” can be built and
traversed within this time bound. In contrast to all
other known approaches, the runtime does not de-
pend on the number of vertices; it is insensitive to
fine sampling.

4 Analysis of the algorithm

For a transformation t, let Bδ(t) be the δ-
neighborhood of t in the maximum norm. Recall that
Bδ(t) is two-dimensional in the case of translations
and three-dimensional in the case of rigid motions.
Denote by Xδ

n(t) the fraction of “votes” that lies δ-
close to t after n experiments. Intuitively, it is not
surprising that the following relations hold

Xδ
n(t) ≈

n large Pr(Bδ(t)) ≈
δ small µ(Bδ(t)) g(t).

4.1 Estimate the probability of a fixed δ-ball

The estimate Xδ
n(t) is called naive estimator in the

theory of density estimation [10]. The next lemma
states that for each transformation t the estimate
Xδ

n(t) is close to Pr(Bδ(t)) with high probability; it
can be proven by using the Chernoff bound, as stated
in [7].

Lemma 3 For each transformation t and for all
0 < ε < 1 the following holds

Pr(|Xδ
n(t)− Pr(Bδ(t))| > ε) < 2e−

ε2n
2 .

Later, we will have to show that the output of the al-
gorithm is a transformation that approximately max-
imizes Pr(Bδ(t)). The latter is no obvious corollary
of Lemma 3 since the output transformation t is a
random vector depending on the sequence of experi-
ments.

4.2 Density function

In this section we show the proof of Lemma 1 for rigid
motions; the proof for translations is a simpler version
of it.

We will use the following special case of a transfor-
mation formula for density functions of random vari-
ables, which can be found in most introductory books
about probability theory, for example in [8].

Theorem 4 Let X : Rn → Rn be a random variable
with density function fX and h : Rn → Rn, h : x 7→

Mx a linear map with det(M) 6= 0. Then h ◦X has
the density function

fh◦X(y) = fX(M−1y) |det(M−1)|.

Proof. (of Lemma 1) Our random experiment con-
sists in drawing uniformly distributed points from
Ω = I ×A×B where I = [−π, π). We are interested
in the density function fX of the random variable

X : Ω → R, X : (α, a, b) 7→ (α, b−Mαa).

Drawing the counterclockwise rotation angle uni-
formly distributed in I corresponds to the random
variable idI with density function fI(α) = 1

2π .
Determining the translation vector t depends on the

rotation angle α. First, we compute the density func-
tion fα of the random variable Xα that is defined as
follows:

Xα : A×B → R2, (a, b) 7→ b−Mαa.

Understanding fα as conditional density fX(α, ·) on
R2 gives then

fX(α, t) = fI(α) fα(t).

Therefore it suffices to compute fα.
The function h : R4 → R4, h : (a, b) 7→ (a, b−Mαa)

is a linear map with determinant 1. Let π : R4 → R2

be the projection on the third and forth coordinate,
then Xα = π ◦ h ◦ idA×B . For a set E ⊂ X, let
χE : X → {0, 1} be its characteristic function that is
one iff x ∈ E. We know

fidA×B
(a, b) =

χA(a)χB(b)
µ(A) µ(B)

.

Using Theorem 4, we get

fh◦idA×B
(a, b) =

χA∩(M−α(B−b))(a)
µ(A) µ(B)

.

Now we can compute fα, which proves the theorem:

fα(t) =
∫

A

fh◦idA×B
(a, t)da

=
µ((MαA + t) ∩B)

µ(A) µ(B)
.

�

4.3 Lipschitz continuity of the density function

A function f from a metric space M to R is called
Lipschitz continuous if there is a constant L such that
for all x, y ∈ M holds

‖x− y‖ < δ =⇒ |f(x)− f(y)| < Lδ

Denote by µδ the Lebesgue measure of the δ-
neighborhood of a transformation t in the metric in-
duced by the maximum norm. The number µδ does
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not depend on t since the Lebesgue measure is in-
variant under translations and rotations. For transla-
tions, µδ = 4δ2 and for rigid motions, µδ = 8δ3. We
are interested in the density functions to be Lipschitz
continuous because then holds

|Pr(Bδ(t))− µδ f(t)| ≤ Lµδδ.

Translations. Let ∆A,B the sum of the lengths
of the boundaries of A and B.

It is easy to show, that for the density function f on
the translation space,

√
2∆A,B/(µ(A)µ(B)) is a Lip-

schitz constant. Observe that the constant depends
heavily on the shapes.

Rigid Motions. Let DB is the minimum radius
of a ball around the origin that contains B and DA

the analogue for A. Standard geometric arguments
show that for the density function g on the space of
rigid motions, (2DB + DA)∆A,B/(2πµ(A)µ(B)) is a
Lipschitz constant.

4.4 Sketch of the main result’s proof

We have already seen that for fixed t

Xδ
n(t) ≈

n large Pr(Bδ(t)) ≈
δ small µδ g(t).

Obviously, in the approximation process two errors
are involved. One we call the sampling error; it be-
comes smaller if the number of experiments increases
and can be bounded by the Chernoff inequality. The
other we call the smoothing error; it becomes smaller
if δ decreases and can be bounded by the Lipschitz
continuity of the density function. Instead of smooth-
ing we could discretize the shapes and would end up
with a discretization error added to the sampling er-
ror. This would simplify the analysis a little but could
not be generalized so nicely to other transformation
groups.

Now we need to analyze what happens if the trans-
formation vector is determined by the sequence of
random experiments, namely the vector whose δ-
neighborhood obtains the most “votes”, and thus is a
random vector itself.

The output of the algorithm can be modeled as ran-
dom variable

Zδ
n = max

t∈R2
Xδ

n(t).

Let S = (s1, . . . , sn) be a sequence of trans-
formations from the random experiments. Con-
sider the arrangement induced by the boundaries of
Bδ(s1), . . . , Bδ(sn), which are the δ-spheres of the
points in S. The depth of a cell is defined as the num-
ber of Bδ(si) it is contained in. The candidates for the
output of the algorithm are the transformations cor-
responding to the deepest cells in this arrangement.
A transformation t lies in the intersection of k of the
neighborhoods if and only if its neighborhood contains
k “votes”.

The next lemma can be proven using an idea of [7].

Lemma 5 Let V be a set of points such that V con-
tains for each cell of the arrangement induced by the
δ-spheres with centers in S one point of its lowest-
dimensional face. There is such a V that contains at
most n2 points in the case of translations and n3 in
case of rigid motions. For each ε > 0 and all n ≥ 6

ε +2
it holds that

Pr(∃t ∈ V : |Xδ
n(t)− Pr(Bδ(t))| > ε)

is less than 2n2e−
ε2(n−2)

8 in case of translations and

less than 2n3e−
ε2(n−3)

16 in case of rigid motions.

Using Lemma 5 and the Lipschitz continuity of the
density functions, the main result can be proven.

We note that the proof provides explicit bounds
for the required number of experiments to ensure ap-
proximation with error at most ε with probability at
most p.
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