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1. Special sessions description 
 

Despite over a decade of research into content-based image retrieval (CBIR), the task of 
finding a desired image in a large collection remains problematic. Even in application 
areas where there is a clear need for effective image retrieval, such as medical diagnosis 
and trademark registration, current technology fails to meet user needs. Much existing 
research has concentrated on retrieval techniques for natural images (typically 
photographs of natural scenes or objects), using various combinations of extracted colour, 
texture and layout feature. Techniques for the retrieval of trademark images, and other 
artificially-produced images such as icons, logos, coats of arms, and clip-art images, have 
received less attention, even though there is evidence, that these images require different 
techniques for effective retrieval. 
All these artificially-produced images are designed to have visual impact, and consisting 
of multiple homogeneous elements, which may be closed regions, lines, or areas of 
texture. They may represent a given type of object (such as a dog or car) in stylised form, 
or consist purely of abstract patterns. They may be coloured or monochrome. A 
comprehensive investigation of retrieval techniques for such images is in our view long 
overdue, for the following reasons: 

• Current techniques for the retrieval of such images are demonstrably 
inadequate. 

• Figurative images such as trademark images, logos, clip art, coats of arms, and 
icons do not readily lend themselves to retrieval on the basis of name. 

• Accurate retrieval and management of such images is of major economic 
importance.   

• Figurative images provide an ideal vehicle for the development of improved 
shape retrieval techniques, which could be applicable to a much wider domain 
of images. 

Shape is probably the single most important feature used by human observers to 
characterize an image - psychological studies show that a whole range of familiar objects 
can be recognized as readily from stylised line drawings as from full-colour natural 
images.  However, the process of automatically extracting image features that 
characterize these elements has proved remarkably difficult, as illustrated in Fig 1. 
Professional trademark examiners judge all of the following four images to be similar, 
because all can be perceived as a triangle enclosing a circle - even though they differ in 
such basic physical characteristics such as the number of components they contain, and 
not all of them explicitly contain a triangle and a circle.  

 

(a)  (b)  (c)  (d)  

Fig. 1. Example of four figurative images judged by professional trademark  
examiners to be perceptually similar. 
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Other aspects can also be important when judging similarity, including image structure, 
the layout of individual image elements (Fig 2). Here, the triangular layout of image (b) 
makes it appear more similar to query image (a) than does (c), despite the similarity in 
the shape of individual components. For images that can be interpreted as natural or man-
made objects, such as trees or ships (in contrast to abstract shapes illustrated here), there 
is a further complication: their semantic interpretation needs to be considered as well. As 
discussed below, this is a particularly intractable problem, with no easy solution in sight.  

The decision on what constitutes an image element can often be quite subjective (see Fig 
1(d)), and is frequently subject to significant individual variation. The task of devising 
techniques that can accurately retrieve such images from a database of hundreds of 
thousands of images is extremely challenging. This is particularly true of trademark 
image retrieval, where the nature of the application demands virtually 100% recall.  

Several further problems are holding back the development of successful retrieval 
techniques in this area. Partial matching of shapes (see Fig 3(a) and (b) below) is 
problematic because commonly used feature-based approaches, which generate global 
feature vectors, do not apply. Developing efficient indexing techniques is crucial when 
databases can contain literally millions of shapes. However, this is difficult because the 
ordinary ‘point access methods’ for feature vectors lose efficiency in high-dimensional 
search space, and there is a need for new techniques for indexing their relative spatial 
layout. This is true not only for proprietary databases, but also the collection of trademark 
images on the web.  

 

 

 

 

 

 

 

 

 

 

(a)  (b)  (c)  
 

Fig. 2. A typical trademark image (a), together with an image judged to have perceptually 
similar aspects (b), and one judged to have little perceptual similarity (c). 

(a)  (b)  (c)  (d)  

Fig 3. Examples of inadequacy of whole image based measures. Trademark examiners 
judge that image (a) should retrieve (b), though its global shape is very different. In 
contrast, (c) should not retrieve (d), even though their edge direction histograms are 

virtually identical. 
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The special sessions therefore contains presentations addressing the problems and 
challenges in trademark image retrieval, the matching of shapes in trademark images, the 
indexing of spatial layout in trademark images, the trademark image retrieval on the web 
and the relevance feedback by the user. 

The following presentations were given. 

Special session “Trademark Image Retrieval” at the ACM International Conference on 
Image and Video Retrieval, CIVR'07, 9-11 July 2007, Amsterdam: 
 

• John Eakins, Jan Schietse, Remco Veltkamp. Practice and Challenges in 
Trademark Image Retrieval.  

• Victoria J. Hodge, John Eakins, Jim Austin. Inducing a Perceptual Relevance 
Shape Classifier.  

• Helmut Alt, Ludmila Scharf, Sven Scholz. Probabilistic Matching and 
Resemblance Evaluation of Shapes in Trademark Images. 

• Reinier van Leuken, Fatih Demirci, Victoria Hodge, Jim Austin. Lay-out indexing 
of trademark images.  

• Euripides G. M. Petrakis, Epimenides Voutsakis, Evangelos E. Milios. Searching 
for logo and trademark images on the web. 

 
Special session “Perceptually-relevant Retrieval of Figurative Images” at the 5th 
conference on Signal Processing, Pattern Recognition, and Applications, SPPRA'08, 13-
15 February 2008, Innsbruck: 
 

• John Eakins, Jan Schietse, Remco Veltkamp. Practice and Challenges in 
Trademark Image Retrieval. 

• Shuang Liang and Zhengxing Sun, Active BSVM Learning for Relevance 
Feedback in Content-Based Sketch Retrieval. 

• Victoria J. Hodge, Garry Hollier, Jim Austin, John Eakins. Identifying Perceptual 
Structures In Trademark Images.  

• Sven Scholz, Similarity Evaluation based on Image Primitives.  
• Reinier H. van Leuken, Olga Symonova, Remco C. Veltkamp. Topological and 

directional logo layout indexing using Hermitian spectra. 
 

2. Deviations from plan 
In order to reach a larger public than would have been possible whit a dedicated 
workshop, we have decided to organize special sessions at larger conferences. This was 
approved by the reviewers.  
 

Appendix 
This appendix contains the papers of the two special sessions that have been published in 
the proceedings. 
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ABSTRACT 
In this paper, we outline some of the main challenges facing 
trademark searchers today, and discuss the extent to which current 
automated systems are meeting those challenges. 

Categories and Subject Descriptors 
H.3.3 Information Search and Retrieval: Search process, 
Selection process; H.3.5 Online Information Services: 
Commercial services; I.4.0 Image processing and computer 
vision (general): image processing software  

General Terms 
Design, Economics, Human Factors, Legal Aspects, Management, 
Performance. 

Keywords 
Trademark similarity, Content-Based Image Retrieval, Pattern 
Matching.  

1. INTRODUCTION 
Despite over a decade of research into content-based image 
retrieval (CBIR), the task of finding a desired image in a large 
collection remains problematic. Even in application areas where 
there is a clear need for effective image retrieval, such as medical 
diagnosis and trademark registration, current technology fails to 
meet user needs. Much existing research has concentrated on 
retrieval techniques for natural images (typically photographs of 
natural scenes or objects), using various combinations of 
extracted colour, texture and layout feature. Techniques for the 
retrieval of trademark images, and other artificially-produced 
images such as icons, logos, coats of arms, and clip-art images, 
have received less attention, even though there is evidence, that 
these images require different techniques for effective retrieval. 

All these artificially-produced images are designed to have visual 
impact, and consisting of multiple homogeneous elements, which 
may be closed regions, lines, or areas of texture. They may 
represent a given type of object (such as a dog or car) in stylised 
form, or consist purely of abstract patterns. They may be coloured 

or monochrome. A comprehensive investigation of retrieval 
techniques for such images is in our view long overdue, for the 
following reasons: 

• Current techniques for the retrieval of such images are 
demonstrably inadequate. 

• Figurative images such as trademark images, logos, clip art, 
coats of arms, and icons do not readily lend themselves to 
retrieval on the basis of name. 

• Accurate retrieval and management of such images is of 
major economic importance. 

• Figurative images provide an ideal vehicle for the 
development of improved shape retrieval techniques, which 
could be applicable to a much wider domain of images. 

Shape is probably the single most important feature used by 
human observers to characterize an image - psychological studies 
show that a whole range of familiar objects can be recognized as 
readily from stylised line drawings as from full-colour natural 
images.  However, the process of automatically extracting image 
features that characterize these elements has proved remarkably 
difficult, as illustrated in Fig 1∗. Professional trademark 
examiners judge all of the following four images to be similar, 
because all can be perceived as a triangle enclosing a circle - even 
though they differ in such basic physical characteristics such as 
the number of components they contain, and not all of them 
explicitly contain a triangle and a circle.  

Other aspects can also be important when judging similarity, 
including image structure, the layout of individual image 
elements (Fig 2). Here, the triangular layout of image (b) makes it 
appear more similar to query image (a) than does (c), despite the 
similarity in the shape of individual components. For images that 
can be interpreted as natural or man-made objects, such as trees or 
ships (in contrast to abstract shapes illustrated here), there is a 
further complication: their semantic interpretation needs to be 
considered as well. As discussed below, this is a particularly 
intractable problem, with no easy solution in sight.  

The decision on what constitutes an image element can often be 
quite subjective (see Fig 1(d)), and is frequently subject to 
significant individual variation. The task of devising techniques 
that can accurately retrieve such images from a database of 
hundreds of thousands of images is extremely challenging. This is 
particularly true of trademark image retrieval, where the nature of 
the application demands virtually 100% recall. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.                                                                  
CIVR'07, July 9-11, 2007, Amsterdam, The Netherlands. 
Copyright 2007 ACM 978-1-59593-733-9/07/0007 ...$5.00. 

∗ All trademark images illustrated in this article are UK crown copyright 
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(a)  (b)  (c)  (d)  

Fig. 1. Example of four figurative images judged by professional trademark examiners to be perceptually similar. 

Several further problems are holding back the development of 
successful retrieval techniques in this area. Partial matching of 
shapes (see Fig 3(a) and (b) below) is problematic because 
commonly used feature-based approaches, which generate global 
feature vectors, do not apply. Developing efficient indexing 
techniques is crucial when databases can contain literally millions 
of shapes. However, this is difficult because the ordinary ‘point 
access methods’ for feature vectors lose efficiency in high-
dimensional search space, and there is a need for new techniques 
for indexing their relative spatial layout. This is true not only for 
proprietary databases, but also the collection of trademark images 
on the web.  

2. Trademark Image Retrieval 
One of the major issues in the Intellectual Property field is 
trademark infringement. It is very important for a firm to know if 
there are other firms which are using “confusingly similar” 
trademark logos with respect to their newly designed trademark 
logo since this can lead to a (costly) legal battle; this is a search 
task. Besides that, firms with “strong” trademarks want to monitor 
all new registrations of trademarks since they do not want to 
admit trademarks which are similar to their own trademark on the 
market; this is a watch task. 

Thomson Compu-Mark (TCM) is the market leader of trademark 
research with offices in Antwerp, Milan, Stockholm, Paris, 
London, Boston and Tokyo. They are offering both search and 
watch products for textual and graphic trademarks. We will 
describe in some more detail the 2 basic trademark research 

products, i.e. the search and watch product. 

Typically a search is performed when one wants to launch a new 
product or service in the market. A trademark (candidate) is 
created by a name creation team, but before registration they want 
to perform a check if there are registered trademarks which are 
similar to their trademark candidate because the marketing 
campaign will fail when an existing trademark successfully 
opposes the registration of the new trademark. To check potential 
infringement one wants to compare the trademark candidate to all  
registered trademarks in a set of registers and classes defining 
both the geographic region and the goods and the services 
attached to the new product/service. 

Trademarks are registered in individual countries (by the 
Trademark Offices) and by international organisations like OHIM 
(Office of Harmonization for the Internal Market) for European 
trademarks, or WIPO (World Intellectual Property Organization) 
for international trademarks.  

In table 1a we list the sizes of the International register (INTE), 
the Community Trademark register (CTM), the Benelux register 
(BENE), the French register (FRAN) and the UK register (GBRI). 
As can be observed, about 30% of all registered trademarks 
contain next to the textual information graphical elements. 

Trademarks are registered for a certain product/service class. This 
classification (there are 45 different product categories) defines 
the goods or services you can use your trademark for. 

(a)  (b)  (c)  
 

Fig. 2. A typical trademark image (a), together with an image judged to have perceptually similar aspects (b), and one judged to have 
little perceptual similarity (c). 

 

(a)  (b)  (c)  (d)  

Fig 3. Examples of inadequacy of whole image based measures. Trademark examiners judge that image (a) should retrieve (b), though 
its global shape is very different. In contrast, (c) should not retrieve (d), even though their edge direction histograms are virtually 

identical 
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Table 1a. Trademark Database sizes 

Trademark 
register 

Number of 
trademarks 

Nr. of trademarks 
with logo 

INTE 667659 209700 

CTM 447421 151398 

BENE 440481 140686 

FRAN 961355 298665 

GBRI 816807 223125 

 

Examples are:  

• Class 32:  Beers; mineral and aerated waters and other non-
alcoholic drinks; fruit drinks and fruit juices; syrups and 
other preparations for making beverages. 

• Class 13: Firearms; ammunition and projectiles; explosives; 
fireworks. 

• Class 42: Scientific and technological services and research 
and design relating thereto; industrial analysis and research 
services; design and development of computer hardware and 
software; legal services. 

The result of a search done in a set of registers and classes is a 
report containing a list of registered trademarks similar to the 
“candidate trademark”. Legal experts will use this report to form 
an opinion about whether it is safe to register (to avoid claims). 

The situation is different when you own a registered trademark. 
To protect your trademark from infringement it is useful to 
perform a watch, because if you use as trademark logo a triangle 
with a hand inside to sell hand cream you will want to oppose 
another producer which registers a logo also containing triangles 
with a hand for facial cream since an average consumer might be 
confused about this.  

Table 1b. Number of new Trms in 2006  

Trademark Register # new trademarks in 2006 

INTE 44.727 

CTM 66.653 

BENE 27.327 

FRAN 69.706 

GBRI 32.383 

 

If a watch is performed, every day one compares the watched 
trademark with all new trademarks published that day. Similar 
trademarks are reported on a daily basis to the watch client and 
again legal experts will evaluate these possible infringements and 
decide if it is appropriate to start a legal action. This is called 
opposition. 

In table 1b we list the number of new trademarks in the year 2006 
in the same registers as in table 1a. As you can see for each 
register you have several hundreds of new trademarks per day. 

3. EXISTING TRADEMARK SEARCH 
TECHNOLOGY 

Until now, the principal means of organizing service- and 
trademark image collections for retrieval has been to use 
manually assigned classification codes to reflect image content. 
The most widely used system is the Vienna classification 
developed by the World Intellectual Property Organization. In 
principle, this solves the problem of retrieving all images similar 
to a given logo by ensuring that similar images will receive 
identical classification codes. 

Table 2. Extract from Vienna Codes 

3.5.1  Rabbits, hares   

3.5.3  Squirrels   

3.5.5  Beavers, marmots, badgers, martens, mink   

3.5.7  Rats, mice, moles   

3.5.9  Hedgehogs, porcupines   

3.5.11  Pangolins, anteaters   

3.5.15  Kangaroos, koalas   

… … 

26.3  TRIANGLES, LINES FORMING AN ANGLE    

26.3.1  One triangle   

26.3.2  Two triangles, one inside the other   

26.3.3  More than two triangles, inside one another   

26.3.4  Several triangles, juxtaposed, joined or 
intersecting   

26.3.10  Triangles containing one or more circles, ellipses 
or polygons (except 26.3.11)   

26.3.11  Triangles containing one or more quadrilaterals   

26.3.12  Triangles containing one or more other 
geometrical figures   

 26.3.23  Lines or bands forming an angle   

 

An extract of the codes can be found in Table2. 

Practically, it goes as follows. Every new registered/published 
trademark logo will be analysed and will be attributed one or 
more Vienna codes. These codes will be added as indexes in the 
database. When a logo search has to be carried out, one 
determines which Vienna codes could be attached to the order 
(i.e. query) trademark logo. These codes will then be queried and 
the human expert will be presented a list of trademark logos 
which will have to be verified visually one by one, and the human 
expert has to decide whether or not it will be put in the search 
report as being similar, or at least relevant for the client. 

The watch is organized in a similar way. One compares for all 
device (i.e. drawing) watch orders the attached Vienna codes to 
the codes of the newly registered and when there is a match, the 
resulting query logo is compared with the newly registered logo. 
It is again a human expert who does the final evaluation. 

However, this approach suffers from two major drawbacks, both 
inherent in any retrieval system based on manual classification 
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codes. Manual classification of images is time-consuming and 
potentially error-prone, and classification codes are not always 
helpful for retrieval, particularly for abstract images. Similarity 
judgments may be based on a number of criteria, including overall 
shape, the shapes of image components, the spatial configuration 
of components and the presence of particular types of object 
(image semantics). No current classification scheme can reflect 
the full range of such criteria.  

As a result, both in search and watch, the human expert is 
confronted with large sets of logos to inspect. The ranking of the 
query result is also quasi random. Only by using some 
combination matching one can influence the ranking of the 
retrieved trademarks.  

For example, for a search order containing a hand and a triangle, 
one typically queries first the logos containing a hand AND a 
triangle, and next one would query all logos with a hand and all 
logos with a triangle. The first category “should” contain the most 
similar trademarks. The other queries can also contain similar 
images because the trademark knowledge logic can lead to the 
conclusion that trademarks with a very dominant hand in their 
logo are confusingly similar. 

Since TCM is confronted with faster and faster delivery times and 
higher quality constraints together with the fact that the number of 
trademark logos grows rapidly, it becomes necessary to 
investigate the possibilities of a system or decision support tool 
based on content based image retrieval (CBIR) techniques to 
streamline their device searching ensuring consistency and an 
acceptable degree of precision and recall. It is especially crucial 
that no confusingly similar trademarks are missed while doing a 
trademark search. 

4. POSSIBLE FUTURE TECHNOLOGY 
By investigating the field for device mark comparison in detail, it 
is clear that a high level of sophistication is needed to provide a 
refined similarity comparison and ranking system. In contrast to 
spotting identical or near-identical images, the challenge for 
providing refined similarity measurement and judgement 
comparable is much bigger. The human decision taking in the 
current device watch and search product lines of TCM is based on 
refined image understanding (decomposing images, recognizing 
explicit but also more implicit image components and 
configurations), refined comparison (invariance for rotation, 
scaling, transformation, occlusion and noise), and last but not 
least on (trade)mark knowledge (judging the strength or weakness 
of used image elements, judging the relative importance of 
elements, etc). In these judgements, human experts perform an 
image interpretation based on recognition of shapes, regions, 
texture, text and spatial configuration. 

On a high level an image retrieval system suited for comparing 
trademark images should fulfil the following constraints: 

• One should take into account every possible 
interpretation of a trademark image. 

• It should be possible to search in big sets of images with 
an acceptable speed (relatively short delivery times). 

• Very similar (to the query image) images in the 
database can not be missed (zero tolerance). 

• Trademark images should be compared in great detail 
(such as shape, contour, and structure) taking into 
account all sorts of transformations (such as rotation, 
scaling, inversion, and blurring). 

4.1 Scope 
Before going into detailed characteristics of a trademark image 
retrieval systems it is important to elaborate on the scope of an 
“ideal” trademark image system. 

First of all we have to take care of the semantic gap problem. For 
a search of a logo with a lion, the client will want to receive in his 
search result all logos containing a lion, even if the “image 
characteristics” of both lions are completely different. In that case 
we are dealing with a semantic search and as a result this kind of 
orders will not be solved by a “traditional” content based image 
retrieval system which compares contours, shapes, lines or 
structures. Fortunately, it is easier to perform a search with 
natural objects than for more geometric order queries (the number 
of logos to inspect are smaller and the decision is easier).  

The added value for abstract orders containing mainly geometric 
shapes will be higher, since currently with the text retrieval 
system, for this kind of orders the human expert is confronted 
with very large collections of logos which have to be inspected. 
This is simply due to the fact that a very big part of all registered 
trademark logos are abstract and the fact that in order to retrieve 
all potential similar trademarks using the Vienna codes, one 
should enter general/broad categories. 

4.2 System Features 
The main characteristics of a possible solution for a trademark 
logo retrieval system are the following: 

Order Query Specification 

In a 'Query by example' environment the order image is taken as a 
starting point, image understanding is performed by the system, 
and the analyst is able to provide additional information. 
Codification is no longer needed, except for image components 
with clear semantic meaning (natural objects like pelicans and 
known artefacts like the statue of liberty). It is clear that 
segmentation should be an important module in the image 
analysis component. 

Since the human expert can indicate the relative importance of 
certain elements/shapes, add tags to natural objects, and correct 
the segmentation results, we will start from an analyzed and 
enriched order image. 

Analysis of target images 

The system should provide a (semi-)automatic analysis of new 
target images. This ensures the incorporation of new (trade)marks 
for device watching, and also incorporation of  existing trademark 
databases for device searching. Coding should no longer be 
needed, except for image components with clear semantic 
meaning (natural objects and known artefacts). As in the case of 
the order query, it seems likely that the images are segmented. 

Robust to noise 

The system should be robust to noise in both order image and 
trademark logo images. Trademark logos with a noise level too 
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high to do an automatic segmentation should be (semi) 
automatically cleaned. 

Advanced image interpretation 

The system should provide image interpretation, and should be 
able to detect image components like shapes, regions, texture, 
colour and text components. Also the spatial configuration of all 
components should be detected. The system should use human-
perception-based segmentation to also identify more implicit 
shapes in the image or partially occluded shapes. 

Advanced image comparison 

The system should be able to compare device mark images by 
comparing all elements resulting from the image understanding 
step, and taking into account their spatial configuration. A query 
image with a circle in a triangle is more similar to a logo with 
both shapes present in a deformed way but in the same 
configuration than to a logo with a circle and triangle in a 
completely different configuration. 

 This comparison of the shapes should remain effective under 
variations like rotation, scaling, transformation, partial occlusion 
and noise. It is essential for this application that partial matching 
is supported and on top of that the matching algorithm should 
reflect in detail how good the partial matching is and which parts 
of the images are matching. 

The fact that text is present on a trademark logo is important. It is 
not needed to take into account the individual letters of the text, 
but the fact that a text field is present in both query and target 
logo in a comparable spatial configuration contributes to the 
similarity measure. 

Colour is also recorded as image element attributes, and can be 
used as a feature in the comparison. 

(Trade)Mark Knowledge Layer 

The image comparison results are combined in (trade)mark 
knowledge rules to provide the similarity judgement and ranking. 
This provides the flexibility to tune/refine the system based on 
human expertise. One of the most important trademark features is 
dominance. The concept of dominance is influenced by the size or 
other characteristics of a shape or object but also the frequency of 
occurrence of a certain object can influence the fact that it is 
dominant. For example: if there are only a very limited number of 
trademarks which use a certain shape in their logo, then this shape 
is very distinctive and therefore dominant. Even if there are stars, 
triangles or circles added to the distinctive shape (for  example a 
swoosh) it will be important to retrieve all trademarks containing 
this distinctive shape and to rank them high. Trademarks 
containing stars, triangles or circles can lead also to a similar 
trademark but the probability is much lower. 

It should be possible to tune the system in order to solve quality 
issues from clients or internal quality checks. Therefore the 
system should represent all information in an image content 
graph. Based on comparison results from both graphs, a tuneable 
(trade)mark logic layer decides on the overall similarity between 
order and trademark logo. This knowledge representation 
approach will enable quality updates and complaint solving. 

Acceptance 

The similar device marks are presented in an acceptance 
environment, that provides ranking, and logical groupings. The 
analyst acceptance is used to refine the proposal even more by 
using relevance-feedback. The human expert should also be 
provided with tools supporting consistent selection. 

Indexing 

The fast delivery times are implying that a trademark image 
retrieval solution also includes advanced indexing schemes that 
provide a fast response despite the complexity of the underlying 
computations.  

4.3 Benefits 
The benefits of a system such as the one described above would 
be quite considerable. Such a system should make it possible to 
deliver in a consistent way high volume logo searches and 
watches with quality assurance and controllable cost. 

5. TECHNOLOGICAL CHALLENGES 
While trademark image retrieval has been the subject of 
considerable research over the last fifteen years [1], no system 
described in the literature is yet capable of meeting all the criteria 
set out above. A brief outline of previous research in the field is 
given below.  

5.1 Previous research 
One strand of research has concentrated on extracting and 
comparing features from trademark images taken as a whole; The 
earliest example of the first approach was Kato's TRADEMARK 
system [2]. It maps normalized trademark images to an 8 × 8 pixel 
grid, and calculated a GF-vector for each image from frequency 
distributions of black and edge pixels appearing in each cell of the 
grid. Query and stored images could then be matched by 
comparing GF-vectors. Other work following this approach 
include the following. 

• Jain & Vailaya [3] use a two-stage process comprising rapid 
screening using edge direction histograms and moment 
invariants followed by template matching; 

• Kim & Kim [4]  calculate all Zernike moments up to order 
17 for each stored and query image, and then select and use 
the moment with greatest discriminating power for matching; 

• Ravela & Manmatha [5] use multi-resolution matching based 
on histograms of local curvature ratios and gradient 
orientations computed from Gaussian derivatives. 

The second approach regards trademark images as a set of 
discrete components which are best matched on an individual 
basis. Overall image similarity can then be computed in a variety 
of ways from component similarities. The earliest example of this 
method was the STAR system developed by Wu et al. [6]. This 
system is based on the principles that perceived trademark 
similarity is a function of shape, structural and semantic 
similarity, and that human intervention is essential to achieve 
acceptable results. The first stage of processing thus involves 
human indexers, who segment trademark images into perceptually 
meaningful components. A mixture of human and automated 
labelling can then be performed, assigning shape features such as 
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Fourier descriptors and moment invariants, structural features 
such as the presence of regular patterns of shapes and semantic 
features such as the presence of particular types of object. The 
overall similarity between trademarks can then be computed from 
component feature similarities. 

The ARTISAN1 system developed by Eakins et al. [7] is based on 
similar principles, though with the important difference that all 
segmentation and feature extraction is performed automatically. 
Gestalt principles are used to derive rules allowing individual 
image components to be grouped into perceptually significant 
families. Similarity matching can be performed at three levels: 
whole images, component families or individual image 
components. More recent versions of the system [8] have 
incorporated multiresolution analysis to remove texture and group 
low-level components into higher-level regions, as well as a wider 
range of shape and structural features. 

ARTISAN's use of Gestalt principles has been taken one step 
further by Alwis and Austin [9], who aim to identify all 
significant line segments in an image and then cluster these into 
perceptually significant units according to Gestalt rules. Rather 
than using conventional similarity matching, their system uses an 
evidence counting method based on feature values extracted from 
closed contours in both raw images and "Gestalt" images.  

Another technique based on differing views of an image is that of 
Leung and Chen [10]. They characterize regions as either solid or 
line-like, extracting boundary contours for the former and 
skeletons for the latter. After extracting features from line 
segments derived from both types of representation, overall image 
similarity is computed by performing a best match between line 
segments in query and stored images. 

5.2 Limitations of current systems 
Despite considerable ingenuity by researchers into trademark 
matching, it is clear that a significant gap remains between the 
needs of users and the capabilities of current technology. Indeed, 
it is not immediately apparent that researchers have always been 
aware of user needs, suggesting that much research may not even 
have tried to tackle the most pressing problems. Taking the 
criteria from Section 3 in turn:  

1. One should take into account every possible interpretation 
of a trademark image. Studies of the ways by which humans 
perceive and interpret images confirm that it is a complex 
process [11], and one that is not straightforward to model in 
software [12]. However, most research to date has 
concentrated on matching trademarks purely on the basis of 
shape or other low-level features. Some researchers have 
looked at shape features derived from the image as a whole, 
while others have compared shape features derived from 
components of segmented images. Some have used regions 
as the basis for shape comparison, others have used line 
segments. But with the exception of Alwis & Austin [9] and 
to a lesser extent Eakins et al. [7], there have so far been few 
attempts to base image matching on multiple views of an 
image.  

                                                                 
1 Automatic Retrieval of Trademark Images by Shape ANalysis 

2. It should be possible to search in big sets of images with an 
acceptable speed (relatively short delivery times). Most 
research to date has been conducted on relatively small sets 
of trademark images, many researchers using collections of 
little more than a thousand images. Search efficiency has 
therefore not been a high priority, though the two-stage 
approach of Jain & Vailaya [3] demonstrates the feasibility 
of one approach to the problem. In the future, significant 
improvements in search efficiency will still be needed before 
any system becomes usable in a commercial environment. 

3. Very similar (to the query image) images in the database 
can not be missed (zero tolerance). This is a fundamental 
requirement of trademark searching, though not necessarily 
true of image searching in general. For many applications 
such a journalism and fashion, it does not matter if some 
relevant images are missed as long as the ones retrieved are 
acceptable to users. In this context it is important that the 
retrieval effectiveness of prototype systems should be 
exhaustively investigated.  

4. Trademark images should be compared in great detail 
(such as shape, contour, and structure) taking into account 
all sorts of transformations (such as rotation, scaling, 
inversion, and blurring). This requirement is in fact 
relatively easy for current image matching technology to 
fulfil. Most, if not all, current feature matching and shape 
comparison techniques are either inherently invariant to 
transformations, or can be made so. Multi-resolution 
matching can handle images at varying levels of detail and 
blurring. However, this kind of processing is extremely 
computationally expensive. Hence the more exhaustively 
query and stored images have to be analysed, the slower the 
system. Even with the most powerful modern computers, 
there still needs to be a tradeoff between speed and 
effectiveness. 

5.3 Challenges and prospects for future 
progress 
Perhaps the most serious limitation of current automated systems 
lies in the area of initial image analysis. Unless all crucial features 
of target images have been effectively computed and stored, 
subsequent matching is unlikely to identify all relevant 
similarities. As indicated above, an ideal system should be able to 
recognize similarities of shape, structure, and semantics, and to be 
able to handle (possibly stylised) text – a challenge well beyond 
the capability of current technology. Even at the level of retrieval 
by shape or structure, considerable advances will need to be made 
in modelling human image perception.  

The importance of providing alternative representations based on 
different views of an image has already been mentioned. One 
possible way to achieve this is follows: 

• Line-based views of an image can be generated by taking the 
output from a suitable edge detector and aggregating it into 
perceptually significant groupings according to Gestalt 
principles, following the approach pioneered by Alwis and 
Austin [9].  

• Region-based views can be generated by multiresolution 
analysis using techniques derived from those already 
developed by Eakins et al [8], augmented by texture 
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classification and possibly by splitting and merging regions 
(following rules similar to those proposed by Hoffmann and 
Richards [13]) to form more perceptually significant 
groupings. 

• Concept-based views can be generated by identifying and 
characterizing familiar (i.e. named) visual concepts within an 
image. These could include shapes such as circles, triangles, 
squares, and hexagons, as well as more abstract concepts 
such as crossover, linear repetition and symmetry, which 
appear from previous studies [8] to play a crucial role in 
similarity determination in some contexts.  

Developing a whole series of views in this way runs the risk that 
many of them will represent a nonsense interpretation of the 
image. This can be avoided by using AI techniques to select those 
views of a given image most likely to make perceptual sense, or 
identify the most effective combination of processing methods. 
However, it may not be possible to train up a machine to perform 
this task to the exacting standards required by trademark 
searchers. Hence a hybrid system may be necessary in which 
human indexers review and if necessary correct machine 
interpretations of images added to a trademark database. Such 
indexers could also assign semantic terms to the images (a task 
which even the best machine learning systems are still incapable 
of performing reliably), thus bringing such a system one step 
closer to commercial acceptability.  

Conventional image matching techniques, based on 1-to-1 
comparison of pairs of image feature vectors, are for the most part 
far too slow to be acceptable with databases containing up to a 
million images. Methods based on searching and matching groups 
of lines, regions or feature vectors may be needed before 
acceptable performance is achieved. Further improvements in 
search efficiency may be gained by using multidimensional 
indexes such as the X-tree [14] to organize feature vectors, and 
Vantage Objects [15] for indexing object space. 

Interfacing, both at the query specification and results display 
stage, is another area that has been relatively neglected by 
researchers to date. Better methods of search formulation are 
needed, allowing users to specify: 

• whether the search should be based on a complete image, 
specified parts of an image or a sketch, and 

• the most appropriate search parameters for a given image – 
for example, giving shape and structural features different 
weights. 

Potentially useful improvements at the display stage include: 

• two- or even three-dimensional display of retrieved images, 
allowing searchers to view similarities between them, and 

• relevance feedback [16], allowing users to improve system 
effectiveness by indicating which retrieved images are 
genuinely relevant to the query. 

Many further approaches remain to be explored, and prospects for 
long-term progress remain good. But the difficulty of finding 
solutions to the trademark matching problem which are 
sufficiently robust for commercial use should not be 
underestimated. 
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ABSTRACT 

In this paper, we develop a system to classify the outputs of image 
segmentation algorithms as perceptually relevant or perceptually 
irrelevant with respect to human perception. The work is aimed at 
figurative images.  We previously investigated human visual 
perception of trademark images and established a body of ground 
truth data in the form of trademark images and their respective 
human segmentations.  The work indicated that there is a core set 
of segmentations for each image that people perceive. Here we 
use this core set of segmentations to train a classifier to classify 
closed shapes output from an image segmentation algorithm so 
that the method returns the image segments that match those 
produced by people.  We demonstrate that a perceptual relevance 
classifier is attainable and identify a good methodology to achieve 
this.  The paper compares MLP, SVM, Bayes and regression 
classifiers for classifying shapes.  MLPs perform best with an 
overall accuracy of 96.4%. 

Categories and Subject Descriptors 

I.5.4 [Pattern Recognition] Applications - Computer vision I.5.1 

[Pattern Recognition] Models - Neural nets, Statistical I.2.10 

[Artificial Intelligence] Vision and Scene Understanding -
Perceptual reasoning, Representations, data structures, and 

transforms, Shape I.4.6 [Image Processing And Computer 

Vision] Segmentation - Edge and feature detection I.4.7 [Image 

Processing And Computer Vision] Feature Measurement -- 
Feature representation, Invariants, Moments, Size and shape.  

General Terms 

Performance, Experimentation, Human Factors, Verification. 

Keywords 

Perceptual relevance, classification, image segmentation, 
perceptual classifier, human image segmentation. 

1. INTRODUCTION 
There has recently been tremendous growth in the storage of 
digital imagery producing a need for accurate and fast indexing 

and retrieval systems. Examples of applications include archiving 
images or photographs, medical image analysis and trademark 
retrieval.  In Content-based Image Retrieval (CBIR) the aim is to 
retrieve images form an image database that are similar to a query 
image.  This process may be performed by matching the whole 
image as a single entity or matching components within each 
image [8].  In this work, we focus on component-based similarity 
matching of trademark images. 

Our work forms part of the PROFI (Perceptually-Relevant 
Retrieval of Figurative Images) project [See section 6].  In 
PROFI, we aim to develop new techniques for the retrieval of 
figurative images (i.e. abstract trademarks and logos) from large 
databases and, in particular, aim to reproduce the matches that 
people find by manual methods on this task. The techniques are 
based on the extraction of perceptually relevant shape features and 
the matching of these features in the target image against features 
in the stored images.  The first stage of this procedure is to 
identify the components present within an image. As our aim is to 
return the images from the automated system that people would 
say were similar, we believe that this segmentation process should 
reflect human perception and segmentation. The principal 
difficulty for image segmentation algorithms in the context of our 
work is the selection of parts that accurately reflect the image's 
appearance to a human observer. 

To obtain a base line for the human performance on the task, we 
have previously conducted a set of experiments investigating 
human segmentation of trademark images [10,11].  The 
experimental results detailed in the two papers and outlined in 
section 2 concur with previous investigations such as [17] in that 
human image segmentation appears to follow a set of perceptual 
principles analogous to the Gestalt laws [15,25].  The experiments 
and analyses show that these Gestalt laws interact and possibly 
conflict as noted by [6].  The experiments also indicate that there 
are a core set of segmentations for each image perceived by two or 
more people along with a set of segmentations seen only by 
individuals.  This core set of segmentations forms the ground truth 
for our evaluations into inducing a perceptual relevance classifier.  
It is vital for any computerised image segmentation algorithm to 
include a perceptual relevance classifier, effectively a global 
goodness score.  This allows the algorithm to reduce the number 
of segmentations output and to focus on perceptually relevant 
shapes whilst, hopefully, discarding irrelevant segmentations. 

The first stage is to identify the shapes present in an image.  To do 
this we require a shape identification algorithm.  In practice any 
closed shape identifier could underpin the procedure, such as 
region growing [28], watershed [2] or closed shape identification 
[1] provided the result of the algorithm may be represented by a 
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list of boundary points to calculate the attributes used here.  It is 
the classification process where we focus our research here, not 
the underlying shape identification algorithm. We use Saund’s 
closed shape identification algorithm [22] here.  It was developed 
for the sketch retrieval domain to identify shapes within human 
sketches but is equally applicable to the trademark retrieval 
domain.  It aims to find closed shapes satisfying global criteria 
and has similarities to our aim of classifying perceptual relevance. 

We aim to use our previous empirical evaluations of human 
perception to induce a classifier that classifies the closed shapes 
output by a closed shape identification algorithm as perceptually 
relevant (to keep) or perceptually irrelevant (to discard). This 
would effectively replace the global goodness measure used in 
Saund’s method.  To do this we require a set of attributes to 
represent each shape as a vector and a classifier to classify the 
shapes output for relevance.   

To decide which attributes to use, this work takes its cue from the 
attributes elicited by Alwis [1], Chan & King [4], ARTISAN [8] 
and QBIC [9].  Alwis [1] has produced a trademark retrieval 
system, with many similarities to the work here, so the features he 
used are particularly relevant for the work here: circularity, aspect 
ratio, stuffedness, “right angledness”, sharpness, complexity, 
directness and straightness.  Chan & King [4] propose a method 
for feature weight assignment in a trademark system.  They use 
invariant moments, Euler number, eccentricity, and circularity in 
their evaluations.  ARTISAN [8] is “regarded as one of the most 
comprehensive trademark retrieval systems in the current 
literature” [13].  ARTISAN uses component-based matching so 
the features used by ARTISAN should be relevant: aspect ratio, 
circularity, convexity, the Fourier descriptors, the shape’s area 
and the three ‘natural’ shape measures defined by Rosin [18]: 
rectangularity, triangularity and ellipticity for trademark retrieval. 
The IBM QBIC [9] system is one of the most ubiquitous image 
retrieval systems developed and has been used widely so the 
features used for matching should be relevant to our 
developmental system.  The shape features used in QBIC consist 
of shape area, circularity, eccentricity and a set of algebraic 
moment invariants.  

In this work, we analyse a series of common classifiers to verify 
that it is possible to classify perceptual relevance using human 
classifications and to pinpoint the classifier that achieves the 
highest recall accuracy while maintaining recall consistency.  We 
assess four supervised learning classifiers: Naïve Bayes [14], 
Multi-Layer Perceptron (MLP) [19], Support Vector Machine 
(SVM) [24] and Regression [20].  Naïve Bayes is a simple 
statistical model linear classifier that often outperforms more 
sophisticated classifiers [26].  Standard regression is a statistical 
model linear classifier aimed at classification with numeric 
attributes such as we use here.  Non-linear statistical model 
classifiers such as the MLP or SVM can model non-linear class 
boundaries and are usually robust to outliers in the data.  These 
four classifiers together thus provide a broad cross-section of 
classifier technology. 

In the remainder of this paper, we describe: our previous human 
segmentation experiments, the underlying closed shape 
identification algorithm that we used for our analyses, the 23 
attributes used to represent each closed shape, the data used to 
perform our classification analyses, the four classifiers we have 

evaluated for recall accuracy, the methodology we use for our 
evaluations, the results, analyses and conclusion inferred. 

2. HUMAN PERCEPTION ANALYSES 
To test the system, it has been necessary to collect ground truth 
data from human subjects on how individuals segment images – 
thus asking the question: “what are the human segmentation 
preferences?” The following explains how we collected this data 
and summarises the work published in [10,11]. 

In our human perception experiments, 53 subjects each received 

32 trademark like images in a booklet.  The subjects were 
requested to draw (using pen or pencil) their perceived 
segmentations of each image in turn on to the booklet. We 
collated the segmentations drawn by the subjects and produced a 
listing of all segmentations for each image in turn.  For our work 
here, we only consider segmentations seen by 2 or more people 
which represent our core set of segmentations that the trademark 
system should output to represent each image. 

Table 1 shows an example image and the human segmentations 
perceived for that image. The human subjects perceived four 
different segmentations – they comprised the following number of 
components (shapes): 5, 2, 3 and 1 components respectively.  We 
identify these as the perceptually relevant components (shapes) 
for this image which the closed shape identification algorithm 
should ideally identify. 

Table 1 Table showing an image (top row) and the four 

segmentations seen by 2 or more people for that image. 

 

 

 

 

 

  

 

3. CLOSED SHAPE IDENTIFICATION. 
To identify the closed shapes in the image, we use Saund’s 
method as pointed out above. This method requires an underlying 
algorithm to identify line segments in an image and the 
relationships between those line segments.  Therefore, we initially 
find the edges in an image and subdivide these into constant 
curvature segments using the Sarkar & Boyer [21] edge detection 
algorithm and the Wuescher & Boyer [26] curve segmentation 
algorithm. These methods were selected as they had successfully 
been used in the trademark system developed by Alwis [1]. The 
Sarkar & Boyer method finds the edge lines in an image and splits 
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these lines into primitives. Wuescher & Boyer performs some 
aggregation of these primitives into more perceptually-oriented 
constant curvature segments and outputs these as a list of constant 
curvature segments.  These segments provide the building blocks 
for our closed shape identifier.  Our aim is to group these constant 
curvature segments using Gestalt like methods to produce a graph 
of segment relations which will underpin the Saund closed shape 
identification algorithm. To produce this graph we use the 
following methods. Each constant curvature segment becomes a 
node in the graph with two ends (first point (denoted as an x, y 
coordinate) and last point (also denoted as an x, y coordinate)).  
We find all segments that are end-point proximal.  We use Lowe’s 
method [16] to extract endpoint proximity by comparing two lines 
with lengths l1 and l2 or curves with perimeter lengths l1 and l2.  In 
the following, (l=l1 if l1<l2 else l=l2).  The distance between their 
endpoints is r.  The inverse significance of endpoint proximity 

between them is
2

2

l

r ρ
.  The parameter ρ is a unit-less constant and 

may effectively be ignored (i.e. set to 1).  So if: threshold
2

2

<
l

r  

where threshold = 0.01 then the two endpoints are joined.  This 
effectively joins the graph by linking the proximal end-points.   

The Saund algorithm overlays this and focuses on managing the 
search of possible path continuations through the graph 
particularly where the graph nodes represent junctions 
(crossroads, t-junctions etc) of lines in the original image.  The 
search is managed through the use of local criteria for prioritising 
the order in which paths are pursued.  Saund has identified criteria 
(scores) for ranking possible paths through junctions based on 
observations.  Path scores accumulate by multiplying junction 
preference scores as the path progresses. 

The closed path search commences from each end (first and last) 
of each node (line segment) identified by the underlying 
Wuescher & Boyer algorithm. For each end (first then last) in 
turn, all possible paths are followed.   This effectively forms a 
search tree with paths through the tree representing the paths of 
candidate shapes.  As each leaf node in the tree is expanded, any 
new child nodes are compared with child nodes in the opposite 
side of the tree.  If they are end-point proximal then a closed path 
has been identified and its nodes and pixels are added to the list of 
candidate paths. All closed paths exceeding a threshold score are 
thus stored as candidate paths.  Saund terminates searching when 
a closed path score exceeds a pre-specified threshold.  Saund 
accepts a closed path as a candidate if its cumulative junction 
score exceeds 0.6 or accepts the closed path and terminates search 
from the particular root node if the score exceeds 0.9.  We do not 
terminate search if the score exceeds this threshold as we feel 
potential closed paths may be missed due to higher scoring and 
shorter paths terminating the search prematurely.  Hence, all paths 
that exceed 0.6 are accepted as candidates but search continues.   

Saund discards closed paths that are subsumed by other closed 
paths with higher scores.  Hence, each new closed path is 
compared to all existing stored paths.  If the new path is a subset 
(including the equivalence set) of an existing path but has lower 
score then the new path is discarded.  If the new path has higher 
score than the existing saved path then the saved path is 
discarded.  

3.1 Determining Good Shapes 
In Saund’s methodology, all paths accepted as candidates are then 
assessed for global figure goodness by awarding a score. In 
Saund’s approach the score for each closed path is produced 
multiplicatively (C*N*E) where C, N and E are: 

Compactness (C) - the ratio of [figure area: area of convex hull]. 

End-point distance (E) - calculated using 1 – de/p where de is the 
distance between endpoints of the path and p the path length. 

Non-end-nearest-approach (N) which penalises paths where an 
endpoint terminates near the body of the path.   

This method does not produce the perceptually relevant closed 
figures identified by our experiments. This is where our work has 
changed the method: by adding a perceptual classifier taught 
using the data from human experiments. Through a brief 
comparison, we identified that, of the three Saund attributes, only 
C (which we call areaScore) matches to some extent the human 
preferences from our experiments. 

The output of our implementation of the Saund algorithm is 
therefore a list of candidate closed shapes found in the image.  
These closed shapes are the candidate shapes whose cumulative 
junction score exceeds 0.6.  Each candidate shape is classified as 
relevant or irrelevant using our perceptual classifier and only 
shapes classified as relevant will be retained for further 
processing.  The candidate closed shapes are represented by a list 
of x, y coordinates representing each point on the shape’s 
boundary (in order with no gaps).  Two example images with one 
relevant shape and one irrelevant shape identified by our 
implementation are shown in Table 2.  The classifier should 
classify the relevant shapes as relevant and the irrelevant shapes 
as irrelevant thus slowing us to discard the irrelevant shapes from 
any further processing. 

Table 2 Table listing 2 images (leftmost column) and two paths 

identified by the Saund algorithm for each image (one 

perceptually relevant (middle column) and one perceptually 

irrelevant (right column)). 

 
  

 

 

 

 

 

 

3.2 Attributes 
As outlined above, we use a classifier to determine which closed 
figures output from our implementation of the Saund algorithm 
are perceptually relevant. The classifier has to be trained on the 
data collected from our ground truth experiments described in 
Section 2. The selection of the attributes for the classifier is 
considered as follows.   
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Each output is a list of boundary points (x, y coordinates) of each 
closed shape.  We produce various attributes from the boundary 
points thus representing each closed shape as a vector of 24 
attributes:  23 attributes calculated from the list of boundary 
points (x, y coordinates) plus the class (perceptually relevant or 
irrelevant).  Note that the 23 attributes are not independent of 
each other; many are closely related such as AreaRatio and 
Roughness; it is the job of the classifier to determine the optimum 
set of attributes. The following attributes are calculated: 

Roughness = Perimeter / Convex Hull Perimeter 

AspectRatio = Perimeter / Min. Area Bounding Box Perimeter  

Stuffedness = Area / Min. Bounding Box Area  

AreaRatio = Area / Convex Hull Area  

GapScore = Max. Gap in Perimeter / Perimeter 

Circularity = 4π* Area / Perimeter2 

Eccentricity = ( )
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3.3 Data Preparation 
To allow the system to classify the data from these attributes, we 
first collected a set of data from the ground truth images. All 
images from the experimental set of 84 images [10,11] which 
contained texture were discarded as texture confuses shape 
identifiers and produces very poor segmentation results.  The 
underlying line segmentation algorithm finds a large number of 
edges in texture data.  To do this we discarded all images that 
produced more than 500 shapes as this is too many to process by 
hand.  This left 48 images.  

Our experiments indicated that there are a core set of 
segmentations for each image perceived by 2 or more people.  
From the chosen 48 images, we ran the closed shape identifier 
(described in section 3) and selected (by hand) shapes output by 
this algorithm that were perceptually relevant (matched shapes 
within the segmentation drawn by 2 or more human subjects) and 
shapes that were perceptually irrelevant (very dissimilar from the 
shapes drawn by the human subjects). We tried to balance the 
number of relevant with the number of irrelevant examples from 
each image although this is not always possible.   

We note that for our analyses here, it is important to choose 
relevance/irrelevance carefully.  We are representing the global 
picture; one shape that is relevant for one image may in fact be 
irrelevant for another similar image containing that shape as 
shown in figure 2.  We took this into account when preparing our 
training/test sets for the classifiers and only selected shapes that 
were perceptually irrelevant across the board.  The final classifier 
is a global classifier; it is not trained on a per image basis so we 
need the global relevance picture which needs careful 
consideration. 

From the 48 images available, we used 29 images to produce an 
original training set comprising 435 records and 19 images to 
produce an original test set comprising 306 records giving a total 
data set size of 741 records. This represents all of the data we had 

available. We labelled these two data sets: set1 and set2 
respectively.  We then extracted the top half of the training set1 

and the top half of the test set2 to produce set3 comprising 371 
records.  When splitting the data sets in half, we ensured that all 
records from a particular image were kept together in one half or 

the other. Set4 which contains 370 records is the bottom half of 

the training set1 and the bottom half of the test set2.  Set5 
comprises 365 records and is the top half of the training set1 and 
the bottom half of the test set2 and finally we merged the bottom 
half of the training set1 and the top half of the test set2 to produce 

set6 with 376 records.  This subdivision allows us 6 runs of each 
classifier with a training set and a test set.  In these analyses, 
standard x-fold cross validation is not feasible as the data set 
contains images that are variants of other images (altered 
according to Gestalt principles) so the constituents of the test and 
training sets must be considered carefully to prevent biasing and 
instability and we tried to prevent this by splitting the sets 
carefully.  Also, we cannot split the records for each image, for 
example if image 1 produced 10 relevant and 10 irrelevant shapes 
then these must all be kept together in one set to prevent biasing 

 

 

 

 

 

 

Shape Image 1 

Shape is irrelevant 

Image 2 

Shape is relevant 

Figure 1. The leftmost shape (two interlocking loops) is 

relevant for the rightmost image but irrelevant for the 

middle image. 

141



of the data.  We are searching for a classifier that generalises well 
so all equivalent data must be together but image variants may be 
split in a considered way. 

3.4 Classifiers 
In the work we assess four classifiers to select the perceptually 
relevant and irrelevant shapes from the images, these are Naïve 
Bayes [14], MLP [19], SVM [24] and Regression [20]. These 
were selected as the most common methods used currently. The 
work aims to pinpoint the best (highest recall coupled with 
highest recall consistency) classifier for classifying the outputs of 
the segmentation algorithm. The Naïve Bayes does not require 
parameter setting so we do not tune that algorithm. We ran 
various configurations (as outlined below) of the MLP and SVM 
algorithm on all 6 train/test set combinations and selected the 
configuration for each classifier with the highest recall. All 
classifiers use identical sets and are free to choose any attributes 
from each training set in turn.  The relatively small size of the data 
prevents us using train and validation sets prior to classifying a 
blind test set.  The regression algorithm does allow tuning but is 
slow to run (up to 1 day) with some configurations.  For this 
algorithm, we ran some initial analyses and selected the best 
performing (highest recall accuracy) configuration when 
classifying the train set (set1) only. 

Naïve Bayes assumes that the attributes X= {x1, x2, x3, ..., xd} are 
independent to simplify the classification task by allowing the 
class conditional densities p(xk | Cj) to be calculated separately for 
each attribute. This assumption appears not to affect the posterior 
probabilities greatly, especially in areas near decision boundaries, 
thus, leaving the classification task unaffected.  We use the Naïve 
Bayes C source code available from [3] running under Linux.   

The MLP neural network is a feed forward topology with a single 
hidden layer comprising 23 input neurons, a hidden layer of 
neurons and a single output neuron.  We have 23 neurons in the 
input as there are 23 attributes in the input data and a single 
output neuron to represent perceptual relevance for these analyses. 
Selecting the number of hidden neurons is important.  We tried 
various settings to choose the optimal configuration of the MLP.  
We selected between 3 to 12 hidden neurons and ran each MLP 
on each of the 6 train/test set combinations (60 runs in total).  An 
MLP with 4 hidden neurons produced the highest recall.  We then 
ran the 4 hidden neurons MLP for between 1000 and 7000 
epochs. The MLP recall percentage increases from 1000 to 2000 
to 3000 training epochs. However, with 4000 epochs, recall 
accuracy degrades markedly and remains worse for both 5000 and 
7000 epochs which indicates overtraining.  Thus, 3000 epochs 
produced the best results coupled with 4 neurons in the middle 
(hidden) layer.  Multi-layer networks use a variety of learning 
techniques; we use back-propagation where the output values are 
compared with the correct answer during network training to 
compute the value of the error-function.  In our analyses here, we 
use the MLP C source code available from [3] running under 
Linux.   

For the SVM, we use C++ source code (LibSVM) available from 
[5] running under Linux.  We use the nu-SVC SVM type (where 
nu is related to the ratio of support vectors and the ratio of the 
training error) with radial basis function kernels (exp(-γ*| xj – z 

|2). All data attributes are scaled in the range [0, 1]. We used the 
script available with libSVM (grid.py) to select values for γ in the 

kernel function.  This recommended 1.0, 0.125 and 0.0625.  We 
then ran the SVM on the 6 train/test set combinations with each of 
these three γ settings along with 0.5 and 0.25.  A setting of 0.125 
produced the highest overall recall.  With γ set to 0.125 we tried 
various nu-values (0.1, 0.3, 0.4, 0.5 (default) and 0.6).  0.4 
produced the highest recall figure. 

For the regression analyses, we use the Sagata regression program 
available from [20] which provides proprietary regression 
algorithms.  It runs under MS Windows XP and sits on top of MS 
Excel. Our preliminary analyses which involved generating the 
regression equation using the training set1 and then classifying 
the same training set1 indicated that the combination of selecting 
an initial set of attributes using the MinPress regression algorithm 
with default settings then using standard stepwise with order up to 
2 attributes followed by Least Squares regression to select the 
equation coefficients produced the highest recall. 

MinPress is similar to stepwise regression except that attributes 
are selected based on improvements in the Press statistic defined 
as: 

PRESS = Σi=1,...,n wi[yi - y(i)•est(xi)]
2  where y(i) •est(xi) is the 

prediction at the data point xi.  Inputs, classes, and weights for 
the xi-th record are omitted.  The same model is fitted to the data 
minus the xi-th record.  This fitted model is used to make a 

prediction for xi. This is y(i) •est(xi). 

Once we have used MinPress to select an initial set {S1}, we 
supplement this set with a set of 2nd order attributes {S2} selected 
using standard stepwise regression [20]. 

We merge {S1} and {S2} giving the selected attributes {S}.  We 
use Least Squares estimation (LSE) to select the regression 
equation coefficients: LSE derives the regression equation 
coefficients that minimize the sum of squared differences 
(residuals) between the regression equation predictions and the 
corresponding actual response (class) values (0 or 1 here).  

3.5 Method 
The SVM and Naïve Bayes are discrete classifiers; each record is 
classified as relevant or irrelevant so we use the classes {0, 1}.  In 
contrast, the regression algorithm and MLP produce continuous 
classifications in the range [0, 1].  For classification (testing), we 
use a threshold value of 0.5 for the regression and MLP outputs.  
If the predicted output class score is >0.5 then the record is 
classified as relevant but if the output score value is <= 0.5 then 
we classify as irrelevant. 

Each classifier is trained and tested with one pair of sets in turn 
and the outputs stored for recall accuracy calculation.  Each 
classifier produces 6 separate equations/models for the data. 

To measure success we recorded overall recall accuracy, (i.e., the 
number of perceptually relevant examples classified as 
perceptually relevant plus the number of perceptually irrelevant 
examples classifies as perceptually irrelevant) and the recall 
accuracy for the perceptually relevant examples. False positives 
(irrelevant shapes classified as relevant) increase the amount of 
data to be processed which is a nuisance factor but less serious 
than false negatives (relevant shapes classified as irrelevant) 
which indicate missing perceptually relevant shapes.   
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For example, for the pair “Train using set1 + test using  set2”, we 
train the classifier with the 435 records in set1 to produce a 
classifier model.  For each of the 306 records in set2, we apply 
this classifier model to the record to produce a class prediction 
(perceptually relevant or perceptually irrelevant).  We can then 
calculate the recall accuracy by counting the number of correct 
predictions and dividing this figure by the number of records in 
the test set.  The set pairs are {train, test}: {set1, set2}, {set2 
set1}, {set3, set4}, {set4, set3}, {set5, set6}, {set6 set5} 

4. RESULTS & ANALYSIS 
The recall accuracy for the four classifiers when run on each of 
the 6 train/test set combinations is listed in Table 3. 

From Table 3, the MLP algorithm has the highest overall recall 
coupled with the highest recall accuracy for perceptually relevant 
and perceptually irrelevant shapes by a considerable margin.  It 
also has consistently high recall.  The regression algorithm 
produces the second highest recall figures with the SVM third 
highest overall.  The Naïve Bayes performs worst except for 
correctly classifying the perceptually irrelevant shapes where it is 
third best.  

It is noted that the size of the training set can have an adverse 
affect on classifier recall accuracy. The MLP performs worst on 
the smallest set2 for training with the largest set1 for testing 
combination and conversely performs best when training on the 
largest set1 and testing with the smallest set2.  The overall recall 
drops from 98% to 94% so the MLP may be adversely affected by 
training set size.  When the SVM trains on the larger set1 and 
classifies the smaller set2 it produces 93% recall accuracy.  
Conversely, when the SVM trains on the smaller set2 and 
classifies the larger set1 the SVM produces 80% recall accuracy. 
However, the SVM suffers its worst performance when training 
with set5 and testing with set6 so we cannot say conclusively 
whether it is adversely affected by training size at this stage.  The 
Naïve Bayes also suffers a performance drop when using the 
smallest training set2 compared with the largest training set1 but 
similarly, Naïve Bayes suffers its worst performance when 
training with set6 and testing with set5 so again, we cannot say 
conclusively whether it is adversely affected by training size at 
this stage.  The regression algorithm does not suffer a significant 
overall performance drop when comparing the largest and 
smallest training sets. 

It is possible to look at the weights in an MLP to see which 
attributes are being used to classify the shapes. Roughness is 
weighted consistently highly (either +ve or –ve).   AspectRatio, 
Stuffedness, AreaRatio, GapScore, Circularity, Eccentricity, 
Ellipticity & Triangularity are generally weighted high.  The 
Fourier descriptors are occasionally weighted highly and the Hu 
moments are generally weighted low.  Roughness indicates how 
convex a shape is.  A high score indicates that the shape fills its 
convex hull and thus the shape is convex.  Conversely, a low 
score indicates a concave shape.  This corresponds with visual 
observations of the results of our experiments: for images 
comprising flood-filled regions in particular, convex shapes tend 
to be perceptually relevant.  Where concave shapes are relevant 
(generally more so for line-based images or thin regions from our 
experiments) the MLP may use a combination of the other 
attributes to achieve the correct classification.  AreaRatio is very 
similar to Roughness so we would not expect both to score highly.  

Circularity, Ellipticity, Triangularity and Stuffedness (with 
AspectRatio closely related to Stuffedness) all define specific 
shapes (circle, ellipse, triangle, and rectangle) and hence their 
applicability varies.  GapScore is often weighted highly indicating 
that shapes with gaps vary in perceptual relevance from shapes 
without gaps in their perimeter. Eccentricity measures the 
regularity of a shape and we would expect regular shapes to be 
more perceptually relevant than irregular shapes.  This hypothesis 
is borne out with the attribute’s relatively high weighting. 

It is interesting to consider the speed of training, as this indicates 
the utility of the method for practical applications. For the 
implementations of the four classifiers used here, the Naïve Bayes 
trains fastest, followed by the SVM and the MLP all of which 
train much faster than the regression program.  For the data set 
combination set6 training and set5 testing, the MLP trains in  2.0 
seconds, the SVM in 0.4 seconds and the Naïve Bayes trains in 
0.3 seconds all running on a 3.4GHz Pentium PC with 2GB RAM 
running Linux.  The regression program takes 40m 24s (2424 
seconds) to complete the three steps of regression training on the 
same data set pair running on a dual 2.8GHz AMD Athlon PC 
with 3GB RAM running MS Windows XP with the regression 
program running on top of MS Excel.  Obviously, we are 
comparing slightly different machines and different operating 
systems (3 C++ algorithms running under Linux on 3.4GHz 
Pentium PC  and one Windows application running on dual 
2.8GHz AMD Athlon PC with MS Windows XP) but the time 
difference between the C++ algorithms and the regression 
algorithm is still significant if speed is the overriding criterion for 
the user. 

5. CONCLUSION 
The work has shown that it is possible to train a classifier to select 
perceptually relevant closed figures from a segmented image, 
effectively capturing the segments that humans see in images. Our 
work has shown that the MLP network can be trained to achieve 
this with 96.4% recall accuracy overall. The MLP has the highest 
recall for the important category: the perceptually relevant 
examples, where it achieves 97.4% accuracy.  It is noted that the 
training time for the MLP is 2 seconds compared to 0.3 seconds 
for the Naïve Bayes which trains fastest.  Although the MLP is 
slower, the training time is still fast.  Therefore, we have 
identified that an MLP with 4 hidden neurons and a single output 
neuron running as the optimum perceptual relevance classifier for 
the perceptual classifier task described in this paper. 

We feel the approach described is very flexible and attained using 
actual human perceptual data.  It is a universal approach 
providing a score of perceptual relevance (global goodness) 
across all shapes regardless of how they are derived.  The 
approach reduces the number of shapes output by the closed shape 
identification algorithm and is a precursor to the matching phase 
of image retrieval.  Classifying the closed shapes and discarding 
perceptually irrelevant shapes reduces the search space during 
image matching and retrieval.  Each image is only represented by 
a sub-section of the candidate shapes output by the closed shape 
algorithm; the shapes classified as perceptually irrelevant are 
removed from the search space.  Reducing the search space 
focuses on human-oriented shapes, speeds further processing 
during image matching and retrieval as fewer shapes need to be 

143



processed and reduces the memory overhead of any further 
processing. 

We intend to use the classifier within the PROFI project to 
generate perceptually relevant views of each image.  The closed 
shape identifier produces a set of candidate shapes for each image.  
The classifier then reduces the set of candidates to the set of 
perceptually relevant shapes for that image.  For all images 
combined, these reduced sets of shapes represent the database of 
perceptually relevant shapes for all images.  Using shape 
attributes (such as the 23 attributes detailed in section 3.2, 
topology attributes such as touching and overlap relations and 
position attributes such as the centroid coordinates) to represent 
the shapes as a vector of attributes, the set of shapes for each 
image may be represented as a similarity graph for the image.  In 
this similarity graph, the nodes are shapes and the arcs in the 
graph are the relations (similarity) between the shapes calculated 
using vector distances.  Images (trademarks) may then be matched 
using graph isomorphism matching and attribute matching (vector 
distance) calculation.  The more similar the graphs representing 
two images, the more similar those two images will be.  Thus we 
can calculate the set of trademarks that are most similar to a query 
trademark using graph isomorphism and vector distance 
calculations on the shapes within the images.  Graph isomorphism 
calculations are computationally expensive so by reducing the set 
of shapes representing each trademark by using our perceptual 
relevance classifier, we are minimising the graph sizes and 
minimising the calculation required.  We are also eliminating 
noise (perceptually irrelevant shapes) from the calculation which 
may adversely affect accuracy. 

The methods we have described and the resulting classifier 
models or regression equation are equally applicable to any 
underlying shape identifier algorithm such as region growing 
[11], watershed [12] or closed shape identification [13] providing 
the result of the algorithm may be represented by a list of 
boundary points to calculate the attributes used here.  Obviously, 
other attributes could be incorporated or the attribute set changed 
if, for example fill points were available to allow fill point 
attributes to be used.   
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Table 3 Table listing the recall scores for the four classifiers on each of the six train/test set combinations.  The highest recall score 

for each row is indicated in bold font.  The maximum column indicates the number of records, number of perceptually relevant (1) 

and perceptually irrelevant (0) records in the respective test sets. 

Train/Test  Max. Bayes MLP SVM Reg. 

Set1/set2 Correct 306 276 300 285 257 

 1s correct 130 112 126 118 122 

 0s correct 176 164 174 167 135 

Set2/set1 Correct 435 356 408 349 359 

 1s correct 240 172 218 179 175 

 0s correct 195 184 190 170 184 

Set3/set4 Correct 370 307 362 329 313 

 1s correct 169 147 161 145 159 

 0s correct 201 160 201 184 154 

Set4/set3 Correct 371 306 356 314 339 

 1s correct 169 148 192 166 145 

 0s correct 202 158 164 148 194 

Set5/set6 Correct 376 308 362 300 321 

 1s correct 171 123 161 128 126 

 0s correct 205 185 201 172 195 

Set6/set5 Correct 365 286 355 304 329 

 1s correct 199 130 192 155 169 

 0s correct 166 156 163 149 160 

Overall Correct 2223 1839 2143 1881 1918 

 1s correct 1078 832 1050 891 896 

 0s correct 1145 1007 1093 990 1022 

Overall %ge Correct  82.73% 96.40% 84.62% 86.28% 

 1s correct  77.18% 97.40% 82.65% 83.12% 

 0s correct  87.95% 95.46% 86.46% 89.26% 
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ABSTRACT
We present a novel matching and similarity evaluation method
for planar geometric shapes represented by sets of polygo-
nal curves. Given two shapes, the matching algorithm ran-
domly generates a point sample from each shape and records
a vote for a transformation which maps one sample to the
other. The experiment is repeated many times. Clusters
of votes in the transformation space indicate good candi-
date transformations for matching the two shapes. Unlike
most voting schemes, though, the samples taken in one ran-
dom experiment are extended as much as possible and the
vote is weighted depending on the samples. The best clus-
ters are those with a large total weight. The second part of
the method is a resemblance evaluation of the two matched
shapes. The definition of our resemblance function incorpo-
rates the proximity of line segments as well as the similarity
of their slopes. The system is evaluated using the MPEG-7
shape silhouette database and a collection of 10 745 trade
mark images. The experiments demonstrate a high perfor-
mance of our algorithms for contour shapes as well as for
trademark images.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; I.5.3 [Pattern Recognition]: Clustering

General Terms
Algorithms, Experimentation

Keywords
Trademark image retrieval, Shape matching, Probabilistic
algorithms, Shape similarity

∗This research was supported by the European Union under
contract No. IST-511572-2, Project Perceptually-Relevant
Retrieval of Figurative Images (PROFI).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR’07, July 9–11, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-733-9/07/0007 ...$5.00.

1. INTRODUCTION
Motivated by the task of automated retrieval of figurative

images such as trademark images we developed an algorithm
for the evaluation of shape similarity. It consists of two main
phases: matching and evaluation of the resemblance of the
matched shapes.

The approach we introduce for matching two geometric
shapes S1 and S2 modeled by sets of plane polygonal curves,
is close to an intuitive notion of “matching”, i.e., find one
or more candidates for the best transformation, that when
applied to the shape S1 maps the most similar parts of the
two shapes to each other. As allowable classes of transfor-
mations we will consider translations, homotheties (scaling
and translation), rigid motions (rotation and translation),
similarities (rotation, scaling, and translation), and general
affine maps.

The matching step of our algorithm is a voting scheme.
Unlike in most well known approaches including geometric
hashing [16], pose clustering (generalized Hough transform)
[2, 11, 12, 14], and the random sample consensus (RANSAC)
[10], we do not use a minimum sample of features to compute
the model parameters (the matching transformations in this
case), but we find large consistent sequences of the corre-
sponding points of two shapes voting for the same transfor-
mation. This transformation gets a vote which is weighted
depending on the size of the sample and the quality of the
match. Thus, we get a distribution of weighted votes in
the transformation parameter space. Similar as in the pose
clustering approach, we then take the largest clusters as can-
didate transformations, where largest clusters are those with
the highest total weight.

After several candidate transformations of one shape have
been identified by the matching algorithm, each of these
transformations ti is applied to the shape S1 and the sim-
ilarity of the shape S2 and the transformed shape ti(S1) is
validated using the resemblance function described in sec-
tion 3. The proposed resemblance function incorporates two
perceptual factors: proximity and parallelism (or factor of
direction), that is, the resemblance value is high if the dis-
tances between the points of two shapes are small and the
line segments contained in the shapes are nearly parallel.
The transformation with the highest similarity value is then
selected as the best match.

We address the problem of matching the complete shape
S1 to the complete shape S2, called complete-complete match-
ing (CCM). In addition, we consider the problem of complete-
partial matching (CPM), i.e., matching S1 completely as
good as possible to some part of S2, and partial-partial
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matching (PPM), i.e., matching some part of S1 as good as
possible to some part of S2. Clearly, both partial matching
problems CPM and PPM are not uniquely specified since
there is a trade-off between the quality of the match and
the size of the matched parts. Which of these two criteria
is more important, depends on the application. We address
this problem by introducing a parameter which regulates the
influence of the quality of match and the matched size on
the similarity value.

Both the matching procedure and the resemblance func-
tion are designed to be robust with respect to noise and to
differences in the representations of the the shapes. The
data used in the experiments described in section 4 show
the importance of that robustness.

2. THE MATCHING ALGORITHM
Given two sets S1, S2 of planar polygonal curves, a trans-

formation t is searched for, that best maps S1 to S2. The
classes of allowable transformations considered here are trans-
lations, homotheties (scaling and translation), rigid motions
(rotation and translation), similarities preserving the direc-
tion of rotation (rotation, scaling and translation – without
reflection), and general affine maps.

The intuition behind that matching is that features of
the first set should be mapped into the proximity of corre-
sponding features of the second set. If the images are not
similar as a whole but do contain several independent sub-
sets of corresponding features, there may not exist a single
transformation but several transformations, each one match-
ing only a subset of corresponding features. The course of
the polygonal curves may be very helpful in identifying cor-
responding features. On the other hand different segmen-
tations at crossings or different appearances of discontinu-
ities may make this identification more difficult. Therefore a
probabilistic voting scheme is applied here that uses votes of
different weight and gathers them to form a set of candidate
transformations.

In [3] we described a probabilistic matching approach re-
lated to the generalized Hough transform and briefly pre-
sented the idea of the new voting scheme which is described
in detail here: During one random experiment a sample is
a set of pairs of corresponding points from the two shapes.
The quality of the match between two finite ordered point
sets is measured by the weighted sum of quadratic distances
between the corresponding points. The set of corresponding
points is iteratively extended until no further data are avail-
able or the samples are no longer consistent. The resulting
preliminary transformation is weighted with the quality of
the match and the size of the matched point sets. Then we
get a weighted sample of the transformation space, where
the neighborhoods with large weight are likely to contain
candidates for transformations resulting in a good match
for the shapes. The idea behind this, is that a transforma-
tion which gives a good match for the shapes, would give a
good match for larger sets of points on these shapes. The
details on selecting the point sets and computing the candi-
date transformations are presented in the following.

The problem of computing preliminary transformations
consists of two subproblems: one is to find correspondences
between features, the other is to find a transformation that
maps the corresponding features to each other.

2.1 Finding correspondences
Conspicuous features of curves arise from regions of high

curvature [5] – regarding polylines these regions are the ver-
tices. But not every vertex, even though its turning angle
may be large, yields a feature recognizable by a human ob-
server. For this reason, the mapping algorithm tries to find
corresponding vertices but also may match a vertex without
corresponding peer to a point lying on a line segment.

The initial part of every vote is the random choice of a sin-
gle vertex in each of the two sets of polylines, and the direc-
tion for traversing the list of subsequent vertices (also both
possible directions may be processed). The pairs of points
are added to the set one by one. In each iteration step the
matching transformation is updated. The final transforma-
tion for the set is weighted and handed over to the clustering
algorithm.

Let p0 be the randomly chosen vertex from the first set S1

of planar polylines and let p1, . . . , pk be the subsequent ver-
tices with respect to the randomly chosen direction. Analo-
gous let q0 be the randomly chosen vertex from the second
set S2 of planar polylines and let q1, . . . , ql be the subsequent
vertices. The pair (p0, q0) is added to the – so far empty –
sample set S.

In each iteration step the distances from the last added
pair of points to the next vertices on the corresponding poly-
lines are computed. If the two computed distances are nearly
equal, the next two vertices are taken as a corresponding
pair which is added to the sample set S. Otherwise a vertex
surrogate is created for the polyline with a larger distance.
A surrogate is a point lying on an edge of the polyline, but
nevertheless is treated like a vertex. It is chosen to have the
same distance to its predecessor as the corresponding two
vertices of the other polyline have.

When the end of a polyline is reached, then starting from
the initial pair the traversal is performed in the other direc-
tion.

2.2 Calculating the transformations
For every new pair of vertices or vertex surrogates added

to the sample set S a transformation is computed based
on a least squares approach. The easiest way would be
to compute the transformation that minimizes the sum of
the squared distances of the vertices. This would favor
parts with many vertices over parts with less vertices re-
gardless of the extent and the expressiveness. In order to
avoid this, we compute the transformation t ∈ T that min-
imizes the sum of the weighted squared distances ε(t) =∑

(pi,qi)∈S w(pi, qi) ‖qi − t(pi)‖2 with w(pi, qi) being half the

length of the edges incident to pi and qj .
If the class of the allowed transformations does not include

scaling, which is the case for translations and rigid motions,
we can determine vertex correspondences as described above
and then compute the transformation minimizing the sum of
weighted squared distances. However, if scaling is allowed,
then the process of finding correspondences is no longer inde-
pendent from the transformation, since the transformation
could change distances between the vertices. We cope with
this problem by using a prescaling factor s, which is ran-
domly chosen such that ld(s) is normally distributed with
mean value ld(s̄), where s̄ is the prescaling factor of the
transformation rated best so far with the initial value of s̄
set to 1. Ss

1 denotes the set S1 scaled by s. For the rest
of the vote, every operation concerning the first set S1 (e.g.
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computing the distance between two vertices) is performed
on Ss

1 .
Detailed analysis shows, that for all the classes of trans-

formations considered here, i.e., translations, homotheties,
rigid motions, similarities, and affine maps, having com-
puted the transformation minimizing the weighted sum of
squared distances for a sample set S, we can compute in con-
stant time the optimal transformation for the set S∪{(p, q)},
which is S extended by a new pair of points p and q. This
fact is important since we iteratively add new pairs of cor-
responding points to our sample set and, thus, compute a
sequence of transformations until the sample is no longer
consistent or all data points are added to the set.

2.3 Checking Consistency
In each iteration step it is checked whether the error intro-

duced by the new added pair is still within tolerance bounds.
We define the maximum tolerated error for a sample as a
linear function of the perimeter of the bounding box con-
taining the sample. The perimeter of the bounding box is
multiplied with a constant parameter called relative error
threshold. If the error introduced by the last added pair is
too big, the traversal of the polylines is ceased, as illustrated
in Figures 1 and 2: the bold polylines are traversed up to the
end of the dashed parts. The transformation for which the
error was farthest from the tolerance bound is weighted and
handed over to the clustering algorithm (the transformation
calculated for the bold polylines up to the beginning of the
dashed line in the example).

This definition of the stop criterion and the choice of the
best index are invariant under scalings and can be done in
constant time. To achieve invariance under rotations also,
the bounding box had to be replaced by the minimum en-
closing circle.

Figure 1: Two instances of the MPEG-7 shape B
data set (ray-7, ray-20 and both mapped).

Figure 2: Perimeter of the bounding box vs. error
of last added pair of points. The part of the polyline
defining the transformation for this vote is plotted
as a solid light grey line, the part skipped is plotted
dashed. The solid dark line is the maximum toler-
ated error bound.

2.4 Weighting the transformations
The two factors that have to be considered for weighting

a transformation t are the expressiveness of the sample and
the quality of the match. Let ε be the sum of weighted
squared distances, let w(S) be the sum of all weights of
the pairs of points in the sample set S, and let Dbb be the
diameter of the bounding-box containing the covered part
of the polyline. Defining the relative root mean square error
e =

√
ε/w(S)/Dbb yields a value representing the quality of

the match which is invariant under scalings.
The match score or weight W (t) of a transformation t is

then defined as W (t) = l/(1+γ·e) with γ being an arbitrarily
chosen constant for balancing out the impact of the length
l and the error e.

The most common technique for the clustering of transfor-
mations (often referred to as pose clustering) – histogram-
ming the transformations in the multidimensional transfor-
mation space (see [12]) – discards the effects on the trans-
formed shapes. Two rotations may yield nearly the same
results if applied to a shape with its center being the origin,
or totally different results if the shape’s center is far away
from the origin. To avoid this imbalance, a distance mea-
sure for transformations is used here, which considers the
shapes’ properties. Let t1 and t2 be two arbitrary transfor-
mations and let S1 be the transformed shape. The distance
measure dS1(t1, t2) = maxp∈S′ ‖t1(p)− t2(p)‖, with S′ be-
ing the set of the vertices of the bounding box of S1 forms
a metric space for affine maps, under the assumption that
the four points of S′ are pairwise different. The distance
between two transformations depends, thus, on the shape
to be transformed and reflects the difference in the image of
the shape under the considered transformations.

2.5 Clustering
A cluster in our sense is a region of limited diameter, which

subsumes a considerable amount of weight of the enclosed
input points (transformations). In the clustering process we
want to find all clusters with large weight because they give
evidence of good matching transformations.

Let Tn be the set of n transformations generated by n
random experiments and Wi be the weight of a transforma-
tion ti ∈ Tn. For a fixed cluster radius rc a cluster Ct with
center t ∈ Tn is defined as the set {ti ∈ Tn|d(ti, t) < rc}
that is the set of transformations with distance less than rc

to the center. The weight of a cluster is defined as the sum
of the weights of its elements. This definition is related to
what is called naive density estimator in statistics.
The transformations that are considered as center of a clus-
ter are identified as follows: ti ∈ Tn is called dominator
of tj ∈ Tn if and only if d(ti, tj) < rc, Wi > Wj , and no
other transformation is dominator of ti. Each transforma-
tion t ∈ Tn that has no dominator is the center of a cluster
Ct. In other words: a transformation t either is the center
of a cluster or it is contained in at least one cluster of its
dominators. This definition allows for a fast computation of
all clusters and their weights.

The clusters may be determined by iteratively taking the
transformation with highest weight as center of a cluster, re-
moving the cluster’s members from the set of potential cen-
ters and continuing with the reduced set. A naive algorithm
would need time quadratic in the number of transformation.
This can be decreased by partitioning the transformation
space and organizing it in a tree structure.
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Every node of the tree may store a cluster which stores the
transformations belonging to it. A node uj

i on level i with in-
dex j represents a ball with some radius ri around its center
(its cluster’s center). It may have arbitrarily many children,
each one representing a ball with radius ri+1 = ri/2 and a
center that lies inside the ball represented by uj

i , see Figure
3 for a schematic illustration. The root node represents a
ball with radius r0 containing all sample transformations.
The smallest radius in the tree is the given cluster radius rc.
The children of a node are ordered, each one only respon-
sible for the part of the space not covered by its preceding
siblings.

u0

u3
1

u2
1

u1
1

u1
2

u2
2

u3
2

rc

Figure 3: Partition of the transformation space.

The center c0 and the radius r0 of the ball represented
by the root node may be easily computed for the classes of
transformations that do not allow scalings: Let cbb1, cbb2

denote the centers and Dbb1, Dbb2 denote the diameter of
the bounding boxes of the shapes S1 and S2 respectively.
Then c0 is chosen to be the translation defined by cbb2−cbb1.
Any transformation t generated by the random experiments
will fulfill the condition that the transformed bounding box
of S1 at least touches the bounding box of S2. Therefore
dS1(t, c0) ≤ Dbb1/2 + Dbb2/2 + Dbb1.

For the classes of transformations that do allow scalings
the space is not bounded in such a natural way. However, if
the application provides a bound on the maximum scaling
factor smax the distance between any transformation t (ho-
mothety or similarity) and c0 can be bounded in a similar
way: dS1(t, c0) ≤ Dbb1/2 + Dbb2/2 + smaxDbb1. If no such
bound is given, the root node and its radius can be updated
during the construction of the tree.

The clustering is performed as follows: The sample trans-
formations are sorted according to their weight and they are
processed in descending order. Beginning from the empty
tree with root node (c0, r0) in each iteration step a trans-
formation t is added to the tree. First, the tree is searched
for all clusters such that t is contained in a ball of radius rc

around the center of the cluster. If such clusters exist, then
t is added to all these clusters. If no cluster containing t is
found, a new cluster C with center t is created and inserted
into the tree.

When a node with center tu and radius r is searched for
clusters neighboring a transformation t, the distance d(tu, t)

is computed. If d(tu, t) < r − rc, all the clusters worth con-
sidering have to lie inside the node’s ball and the subsequent
siblings of the node may be discarded. If d(tu, t) > r+rc the
clusters have to lie outside and the node u may be discarded.
In the other cases the node and the subsequent siblings have
to be considered. The search is then performed recursively
in all nodes, that may contain t.

For a cluster C being inserted into a node representing
a ball with radius r, if there exists at least one child node
representing a ball containing the center of C, C is recur-
sively inserted into the first such child. Otherwise, a new
child holding C with radius r/2 and a center corresponding
to the center of C is created and appended to the list of
child nodes.

After having processed all transformations, the clusters
are sorted according to their weights. The clusters with the
highest weights provide the candidate transformations. The
number of candidate transformations may be chosen as a
constant or we may consider the clusters with weight up to
a certain fraction of the maximum weight.

Properties of the tree.Since the number n of samples is
finite, the considered transformation space Ti is bounded,
i.e. ∃ri ∈ IR : ∀x, y ∈ Ti : d(x, y) < ri. A subset Ci ⊂ Ti is
called an ε-packing if and only if ∀x, y ∈ Ci : d(x, y) > 2ε.
The size of the largest ε-packing is called the packing number

P (Ti, ε). For ε → 0, P (Ti, ε) = O
((

ri
ε

)D)
for D being

the dimension of the space [6]. Therefore the maximum
number of balls of radius ri/2 with centers in Ti such that no
center is contained in another ball, is in O(2D). This means
that the number of children a node of the tree may have
is bounded by a constant only depending on the dimension
of the transformation space. The depth of tree is at most
dlg(r0/rc)e.

3. THE SIMILARITY FUNCTION
After some candidate transformations have been found,

a distance or similarity measure has to be applied to rate
the similarity of the two matched shapes. Most of the exist-
ing distance measures are either not applicable to the sets
of polygonal curves (like Fréchet distance or turning angle
function) or are maximum based distances (like Hausdorff
distance) and therefore are too sensitive to noise. We de-
scribe a new similarity measure which averages over the
whole set of polylines, so it is not sensitive to noise, but
looses the property of being a metric. It takes into account
special properties of line segments, and is invariant to dif-
ferent parameterizations or splitting of polylines.

The resemblance function is defined for every point of the
polylines and stands for how good the point is represented
by the other set. It is composed of the point’s distance to
the points of the other shape and of the similarity of slopes.

Let h be a straight line segment of the first set S1 with
endpoints p0 and p0+v, and g a segment of the second set S2

with endpoints q1, q2. Let h′ and g′ denote the supporting
lines of the segments h and g respectively. For a point p ∈ h
we define the distance to g as the distance to a point q on
g, such that the orthogonal projection of q on h is exactly
p, if such a point q exists. Otherwise, if p′ is the nearest
orthogonal projection of an endpoint of g on h′, the the
distance from p to g is defined as the distance from p to
p′ plus the distance from p′ to the corresponding endpoint

536



of g. Formally, consider a parameterization of h′: p(λ) =
p0 + λ · v, λ ∈ R. Let q(λ) denote a point on g′, such that
p(λ) is an orthogonal projection to h′ of q(λ). Further, let
p1 = p0 + λ1 · v and p2 = p0 + λ2 · v denote projections of
the endpoints q1 and q2 on h′, and w.l.o.g., let λ1 < λ2, see
Figure 4 for an illustration. The distance function is then
defined as

δh,g(λ) =


‖p1 − q1‖+ ‖p(λ)− p1‖, 0 ≤ λ < λ1

‖p(λ)− q(λ)‖, λ1 ≤ λ ≤ λ2

‖p2 − q2‖+ ‖p(λ)− p2‖, λ2 < λ ≤ 1

p2
h′

g

h

q2

q(λ)

p1 p(λ) p0 + v

q1

g′

p0 = p(λ1)
= p(λ2)

Figure 4: Definition of the distance between two line
segments

This definition of the distance (unlike the Euclidean dis-
tance) ensures that the function δh,g(λ) is piecewise linear,
which allows for a fast computation of the resemblance func-
tion.

If the distance of a point p ∈ h and the segment g equals
zero, that is, p lies on g, then we say that p is exactly repre-
sented by g – the degree of being represented, therefore, is
1. The greater the distance gets, the lesser p is represented
by g. The decrease in similarity is weighted with the size of
the shape S1. In [13] an inverse distance function is used
in a similar context for the rating of transformations in an
optimization problem. For their task they chose a function
that exponentially decreases with higher Euclidean distance
to value the correspondence of features (see Figure 5(a)).

In the present case the goal is not to find an optimum, but
to rate a given configuration. Small deviations in the posi-
tion of the features of the two sets should not result in an
excessive decrease in similarity function. Therefore an inver-
sion function with a high (negative) slope around the y-axis
is inapplicable. The function α′h,g(λ) = exp(25(δh,g(λ)/DS1)

2),
where DS1 denotes the diameter of the shape S1, seems more
promising. It rates pairs with a distance less than 5 % of the
diameter very high (over 0.9) and with a distance of more
than 25 % of the diameter very low – around 0.2 (see Fig-
ure 5(b)). To make the computation easier, the piecewise
quadratic function

αh,g(λ) = max(1− 25

(
δh,g(λ)

DS1

)2

, 0)

is chosen. It has the same characteristics for small distances
(up to 10 %) but decreases faster for greater distances (see
Figure 5(c)).

The resemblance of two line segments also depends on
their slopes. Line segments with similar slopes should get a
higher resemblance value, so a slope factor βh,g is defined as

βh,g = cos (∠(h, g))4

(a) (b) (c)

Figure 5: (a) exponentially decreasing inverse dis-
tance; (b) inversion function α′; (c) inverse distance
function α

It rates pairs with a difference in slopes of less than 10◦ very
high (over 0.9) and with a difference of more than 45◦ very
low (below 0.25). The exponent 4 was chosen experimen-
tally.

The resemblance function φh for a line segment h is de-
fined as a combination of inverse distance function and slope
rate:

φh(λ) = max
g∈S2

(αh,g(λ) · βh,g) (1)

In applications that follow human perception, parts with
many parallel line segments have to be prevented from dom-
inating over parts with solitary line segments. Therefore a
weight function ω is defined analogously to the resemblance
function. It rates the density of similar line segments of an
image. For a line segment h ∈ S1 it is defined as

ωh(λ) =
1∑

g∈S1
(αh,g(λ) · βh,g)

(2)

Note that the weight function rates the similarity of a seg-
ment h to the other segments in the same set.

The directed resemblance measure for two sets of line seg-
ments Φ→(S1, S2) is defined as a weighted mean over all
points of the shape S1:

Φ→(S1, S2) =

∑
h∈S1

(∫ 1

λ=0
φh(λ) · ωh(λ) dλ · lh

)
Ω(S1)

, (3)

with lh being the length of h and Ω(S1) being the total

weight of S1: Ω(S1) =
∑

h∈S1

(∫ 1

λ=0
ωh(λ) dλ · lh

)
.

The undirected resemblance measure Φ(S1, S2) is defined
as the weighted arithmetic mean:

Φ(S1, S2) =
Φ→(S1, S2) · Ω(S1) + Φ→(S2, S1) · Ω(S2)

Ω(S1) + Ω(S2)
. (4)

From this resemblance measure a deviation or distance mea-
sure may be derived, but of course this will never be a metric
as the triangle inequality does not hold.

Computational complexity.The resemblance value is com-
puted evaluating the integrals of a combination of the resem-
blance function and the weighting function for every line
segment. For two sets with n line segments each, the resem-
blance function – as defined in Equation (1) – for a single
line segment is the upper envelope of at most 4 ·n + 1 regu-
lar (partially defined) functions. Using quadratic functions,
each pair intersects at most 2 times (unless equal). Accord-
ing to the upper bound on the length of Davenport-Schinzel
sequences [1] the complexity of the upper envelope of the

537



4 · n + 1 functions is bounded by O(n · 2α(n)) with α being
the inverse Ackermann function.

The weighting function for a single line segment – as de-
fined in Equation (2) – is the sum of n functions, each one
split into at most 4 regular pieces. The number of intervals
for the sum is at most 3n + 1. So the overall complexity for
all the line segments is bounded by O(n2 · 2α(n)).

3.1 Partial similarity function
For the complete-complete matching resemblance function

as defined in Equation (4) we took a weighted combination of
two one-sided resemblance values. Note that the definition
of the directed resemblance function (Equation (3)) applied
to the complete shapes S1 and S2 gives us a score of how
good the complete shape S1 is matched to shape S2 and,
therefore, a score for the complete-partial matching.

For partial-partial matching we keep for each cluster a
record of which parts of the shapes contribute to the trans-
formations contained in this cluster. Let C be a cluster and
SC

1 ⊂ S1 and SC
2 ⊂ S2 are the parts of the shapes that

contributed to the transformations in C. Then, we compute
the resemblances for the matched parts: s1 = Φ→(SC

1 , SC
2 )

and s2 = Φ→(SC
2 , SC

1 ). These values waive the remaining
parts S1

SC
1 and S2

SC
2 of the shapes completely, so in general the highest val-

ues would be achieved by clusters matching very small parts
perfectly.

The size of the matched parts also has to affect the value
of partial similarity. Therefore, we compute a ratio of the

matched parts as ρ1 =
|SC

1 |
|S1|

and ρ2 =
|SC

2 |
|S2|

respectively

where |Si| denotes the total length of the polylines of the
shape Si and

∣∣SC
i

∣∣ denotes the length of the parts matched
contributing to the cluster C. A weight factor fi = 1− (1−
ρi)

k (see Figure 6) if defined, where k is a (user-defined)
parameter; the default value of k in our implementation is
3. The maximum of two weight factors f∗ = max(f1, f2) is
then used to adjust the resemblance value: s∗ = f∗ s1+s2

2
.

The choice of the factor function was motivated by the fol-
lowing consideration: if large parts of at least one shape are
matched, we want to leave the resemblance value almost un-
changed, and give larger penalties the smaller the matched
parts get. With the parameter k the user can control these
penalties. If k is large, the resemblance value stays almost
unchanged even for small parts, whereas for small values of
k the quality of match decreases with the relative size of
matched parts.

4. EXPERIMENTAL RESULTS
We implemented the matching algorithms and the resem-

blance measure as an automated application that finds the
best resemblance value for every pair of shapes from a given
set of shapes. The “CE-Shape-1” part B dataset from the
MPEG-7 shape silhouette database was used as test data.
It consists of 1400 (mostly) silhouette images, subdivided
into 70 classes containing 20 related images each. From the
images the outer closed contours were extracted. The poly-
lines for which every vertex corresponds to a pixel, were then
simplified using the Douglas-Peucker algorithm [7].

The resemblance of the shapes was tested under similarity
transformations including reflections. To avoid unnecessar-
ily many unsuccessful attempts, the shapes were scaled in

if k is large, the resemblance value stays almost unchanged even for small

parts, whereas for small values of k the quality of match decreases with the

relative size of matched parts.
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Fig. 6. Weight factor function parameterized by k.

4 Experimental results

We implemented the matching algorithms and the resemblance measure as an

automated application that finds the best resemblance value for every pair of

shapes from a given set of shapes. The “CE-Shape-1” part B dataset from the

MPEG-7 shape silhouette database was used as test data. It consists of 1400

(mostly) silhouette images, subdivided into 70 classes containing 20 related

images each. From the images the outer closed contours were extracted. The

polylines for which every vertex corresponds to a pixel, were then simplified

using the Douglas-Peucker algorithm [14].

The resemblance of the shapes was tested under similarity transformations

24

Figure 6: Weight factor function parameterized
by k.

advance so that their bounding boxes had the same diam-
eter. The whole comparing process was done repeatedly, 3
times with the original (pre-scaled) shape and 3 times with
one shape flipped to incorporate reflections. As result of the
comparison of two shapes the highest resemblance value en-
countered for any of the candidate transformations and for
any of the iterations was taken.

Every shape was compared to all the 1400 shapes of the
set, including itself, and the nearest neighbors, that is shapes
with highest resemblance value, were determined. The per-
formance was rated based on three values:
True Positives as Nearest Neighbors: the ratio of shapes
from the same class found as consecutive first nearest neigh-
bors. The average for all the 1400 shapes was 67.78%.
True Positives in Class Size: the ratio of shapes from the
same class found among the 20 nearest neighbors. The av-
erage for all the 1400 shapes was 76.89%.
True Positives in Double the Class Size: the ratio of shapes
from the same class found among the 40 nearest neighbors,
the so called bull’s eye performance. The average for all the
1400 shapes was 84.28%. The best bull’s eye performance
of 84.33% on the MPEG-7 shape silhouette database was
reported by Attalla and Siy in [4].
Our algorithm is also integrated into sidestep, a system
for evaluation of shape-based retrieval algorithms, which is
described in [15].

We also evaluated our system using a collection of 10 745
abstract images from the UK Trade Marks Registry and a
set of 24 image queries. This is the same test set as was
used for the evaluation of the Artisan system as reported
in [8]. The set of relevant images for each query was se-
lected by experienced trademark examiners and was used as
a benchmark for the system evaluation.

We evaluated the performance of our system on the trade-
mark image set according to the performance measures used
in [8]: normalized recall Rn, normalized precision Pn and
normalized last place Ln, which are defines as

Rn = 1−
∑n

i=1 Ri −
∑n

i=1 i

n(N − n)

Pn = 1−
∑n

i=1(log Ri)−
∑n

i=1(log i)

log
(

N !
(N−n)!n!

)
Ln = 1− Rl − n

N − n
,
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where n is the total number of the relevant images, N is the
size of the whole collection, Ri is the rank at which relevant
image i is actually retrieved, and Rl is the rank at which the
last relevant image is retrieved. All three measures rank a
system’s retrieval performance in response to a query from 0
to 1, with 1 meaning perfect retrieval. The major difference
between normalized recall and precision is that normalized
recall gives higher weighting to success in retrieving the first
few items, while normalized precision gives equal weighting
to all retrievals. The last place ranking indicates the number
of retrieved items a user has to search in order to have a
reasonable expectation of finding all relevant items. This
measure is useful for applications requiring an exhaustive
search, for example trademark retrieval.

The performance achieved by our system on the trade-
mark test set is: normalized recall of 0.93, normalized preci-
sion of 0.71, normalized last place of 0.68. The early imple-
mentation of the Artisan system (which is regarded as one
of the most comprehensive trademark retrieval systems in
the current literature [9]) had the values of 0.90, 0.63, and
0.56, respectively.

The experiments show that the algorithm is robust with
respect to noise and to differences in the representation of
the shapes. However, apart from the good results achieved,
we recognized some cases – especially among the trademark
images – that are problematic for our approach:

• frames
If the important part of a trademark image is sur-
rounded by some kind of a simple frame, most humans
do not pay much attention to that frame. The simi-
larity measure however is influenced by it, because the
frames naturally are larger than the part contained in
it. To tackle this problem by using the partial-partial
matching variant may result in high similarity values
for completely different logos just because the frames
are identical.

• spatially independent parts
Comparing two images, that consist of two or more
spatially independent parts and the corresponding parts
are similar but arranged in slightly different ways, most
humans do not care about the differences. However,
there exists no affine map that aligns all parts properly
at the same time.

To overcome these problems will be part of our future work.
We think the results achieved on both test sets are highly

encouraging. They indicate that our method is a general
purpose matching technique, not limited to contour shapes,
but also performs well on complex shapes within the context
of the non-trivial task of trademark image retrieval.

5. CONCLUSIONS
In this paper we presented a shape matching algorithm

that randomly selects a point sample in each shape and gives
a vote to a transformation which maps one random sample
to the other minimizing the squared distances between the
corresponding points. Instead of selecting a minimum size
sample for the given class of transformations, as is usual in
voting based methods, we extend the samples until the whole
data is incorporated or the samples are no longer consistent.
The transformation matching the sample sequences is then
weighted according to the quality of match and the size of

the samples. After sufficient number of random experiments
the weighted votes in transformation space are clustered and
the clusters with high total weight are taken as candidate
transformations.

The second part of our method is similarity evaluation.
Each candidate transformation is applied to one shape and
the resemblance of the two shapes is rated according to the
distance between the points of two shapes and to the sim-
ilarity in slopes of the straight line segments contained in
the shapes. We also define complete-partial similarity vari-
ant of our resemblance function, which reflects how similar
the complete shape S1 is to some parts of the shape S2, and
a partial-partial similarity variant, i.e., how good a part of
shape S1 matches some part of shape S2.

We applied the implementation of our algorithms to the
“CE-Shape-1” part B dataset from the MPEG-7 shape sil-
houette database, and to a test collection of 10 745 trade
mark images provided by the UK Trade Marks Registry with
a set of 24 image queries, both with convincing results.

The challenges mentioned in section 4 may be tackled by
dividing the images into meaningful parts, weighting them,
and applying the matching and similarity evaluation as pre-
sented in this paper to this parts.
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ABSTRACT
Ensuring the uniqueness of trademark images and protect-
ing their identities are the most important objectives for
the trademark registration process. To prevent trademark
infringement, each new trademark must be compared to a
database of existing trademarks. Given a newly designed
trademark image, trademark retrieval systems are not only
concerned with finding images with similar shapes but also
locating images with similar layouts. Performing a linear-
search, i.e., computing the similarity between the query and
each database entry and selecting the closest one, is ineffi-
cient for large database systems. An effective and efficient
indexing mechanism is, therefore, essential to select a small
collection of candidates. This paper proposes a framework
in which a graph-based indexing schema will be applied to
facilitate efficient trademark retrieval based on spatial rela-
tions between image components, regardless of mutual shape
similarity.

Our framework starts by segmenting trademark images
into distinct shapes using a shape identification algorithm.
Identified shapes are then encoded automatically into an at-
tributed graph whose vertices represent shapes and whose
edges show spatial relations (both directional and topolog-
ical) between the shapes. Using a graph-based indexing
schema, the topological structure of the graph as well as
that of its subgraphs are represented as vectors in which the
components correspond to the sorted Laplacian eigenvalues
of the graph or subgraphs. Having established the signa-
tures, the indexing amounts to a nearest neighbour search
in a model database. For a query graph and a large graph
data set, the indexing problem is reformulated as that of
fast selection of candidate graphs whose signatures are close
to the query signature in the vector space. An extensive set
of recognition trials, including a comparison with manually
constructed graphs, show the efficacy of both the automatic
graph construction process and the indexing schema.
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
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Figure 1: Two trademarks resemble each other
based on the layout of their shapes despite the
dissimilarity between their individual component
shapes.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Content-based Image Retrieval, Trademark Retrieval, In-
dexing, Laplacian spectrum

1. INTRODUCTION
One of the highly active research areas within the broad

field of shape matching and Content-based Image Retrieval
(CBIR) is trademark retrieval. Trademarks (or, logos) 1

come in different forms, with varying kinds of unique prop-
erties. Textual information, shape, layout, and in some cases
colour are probably the most important ones. Ensuring the
uniqueness of trademarks and protecting their identities are
the most important objectives for the trademark registra-
tion process. To prevent trademark infringement, each new
trademark must be compared to the database of existing
trademarks. Traditionally, this process is done by assigning
keywords to shapes using predetermined vocabulary such
as the Vienna classification and searching trademarks based
on the keywords [21]. Since these kinds of methods involve
heavy human interference, automatic trademark retrieval is
of great importance.

Given a query image, most automatic trademark retrieval
systems aim to find images with similar shapes without tak-
ing into account the spatial layout of the shapes. Although
retrieving images containing similar shapes may seem as the

1defined by the UK patent office as a sign which can dis-
tinguish the goods and services of one trader from those of
another, and be represented graphically
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Figure 2: Three different configurations of 5 circles.
Suppose the leftmost image, the Olympic logo, is
used as a query. Because of a similarity in layout,the
middle image should receive a higher vote than the
rightmost image, despite the fact that pure shape
similarity on components is the same.

primary goal, there are many cases where the layout simi-
larity plays a more important role for ensuring uniqueness.
An example of this scenario is given in Figure 1 in which the
layout of the shapes reveals a strong figure in itself. The two
trademarks resemble each other despite the dissimilarity be-
tween their individual shapes. In case these two trademarks
are to be registered in the same or in a closely related prod-
uct group or service category, a conflict of uniqueness arises.

Layout similarity between trademarks is also used to im-
prove the quality of matching based on shape similarities.
Consider Figure 2, where two candidates are returned with
the same similarity scores against a given query. Although
they both contain the same shapes, the middle candidate
should be assigned a stronger similarity value since its shapes
are in a configuration similar to that of the query. Hence,
one may observe that applying layout similarity improves
the overall quality of a trademark retrieval system.

The work presented in this paper proposes a framework in
which a graph-based indexing schema will be applied to facil-
itate efficient trademark retrieval based on spatial relations
between image shapes regardless of their mutual shape sim-
ilarities. Our framework begins by segmenting trademark
images into distinct shapes using a closed shape identifica-
tion algorithm. A simple edge detector would not be suffi-
cient as many images in our test set are noisy and this noise
causes small gaps in the shape boundaries so these gaps need
to be closed. In practice any closed shape identifier could
be used here, such as region growing [29] or watershed [3].

We chose to refine and adapt Saund’s closed shape identifi-
cation algorithm [25] within the PROFI project [15]. Saund’s
approach was developed for the sketch retrieval domain but
is equally applicable to the trademark retrieval domain. Our
adapted algorithm integrates seamlessly with our other project
software and provides two complementary versions. Us-
ing two complementary versions of the same technique en-
sures consistency which is essential in image retrieval. For
this evaluation, we use a simplified version of our algorithm
[15]. The simplified version aims to find just the basic
shapes present in an image as the graph layout matching
requires only the basic shapes compared to the more per-
ceptual shapes perceived using Gestalt2 principles [27, 16]
discovered by our complementary version. In figure 3, we
are interested in the three small triangles (to the left in fig-
ure 4) for our evaluation here but not the larger perceptual
triangle formed by the three smaller triangles (to the right

2The Gestalt principles refer to the shape-forming capabil-
ity of human vision. In particular, they refer to the visual
recognition of figures and whole shapes rather than just ’see-
ing’ a simple collection of lines and curves.

Figure 3: A sample trademark image.

Figure 4: Possible shapes identified in figure 3.

in figure 4). The fact that the three small triangles form a
larger triangle will be discerned by the layout indexing so
we do not need to find it here. The two approaches may
therefore be viewed as complementary. The simple closed
shape approach used here to find the basic shapes which
feed into a layout indexing algorithm where the layout in-
dexing infers the perceptual relations. The more perceptual
closed shape approach described in [15] finds the perceptual
shapes which may be used for shape matching where simi-
larity is determined by ”shape” and which requires higher
level (perceptual) shapes for matching.

Given this set of shapes identified within a trademark,
its layout is then encoded automatically into an attributed
graph whose vertices represent shapes and whose edges show
spatial relations (both directional and topological) between
the shapes. Using a new graph-based indexing schema, the
topological structure of the graph as well as that of its sub-
graphs are represented as vectors in which the components
correspond to the sorted Laplacian eigenvalues of the graph
or subgraphs. Having established the signatures, the index-
ing now amounts to a nearest neighbour search in a model
database. For a query graph and a large graph data set, the
indexing problem is reformulated as that of fast selection
of candidate graphs whose signatures are close to the query
signature in the vector space.

The rest of the paper is organized as follows. After giving
an overview of the related work in Section 2, we review the
basics for our shape identification algorithm in Section 3.
Section 4 presents a method to encode shape layouts in a
graph. We give the details for our graph-based indexing
algorithm in Section 5. Our framework is evaluated in the
domain of trademark retrieval in Section 6. We close the
paper with our conclusions and future work in Section 7.

2. RELATED WORK
Since our framework consists of encoding layout of a trade-

mark in a graph and graph-based indexing, we will sepa-
rately review the related work in these two concepts.

2.1 Encoding layout
The spatial relations between two objects in an image can

be divided into topological and directional relations. Egen-
hofer [8] describes 8 basic topological relations: disjoint,
contains, inside, meet, equal, covers, covered-by and over-
lap. Directional relations are usually represented by the four
primary directions (North, South, East and West) and the
four secondary directions (NW, SE, SW and SE). An alter-
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native for this representation is the angle between the line
connecting the two centres of mass and the horizontal line.
For instance, the latter method was used by El-Kwae et al.
[9] and Gudivada et al. [13].

A method for encoding layout taking into account only
directional information was proposed by Chang et al. [5]
and is called 2D-Strings. To produce a 2D-string represen-
tation, the centre of mass of each object in the image is
projected on the x and y axes. By taking the objects from
left to right and from below to above, two one-dimensional
strings are obtained, in which the objects are represented
by a class identifier. The shape matching problem is now
transformed into string matching. Various extensions have
been proposed such as the 2D G-String [4], 2D C-String [17].
These extensions deal mainly with overlapping objects with
complex shapes.

Petrakis and Orphanoudakis [23] propose an indexing scheme
based on 2D-Strings. For each image, all possible subsets of
size 2 up to a predefined number Kmax are created. These
subsets are represented by a string taking into account both
layout information and object specific information: the or-
der (as in a 2D-String), inclusion properties, object size,
roundness and orientation.

A major drawback of these symbolic projection methods
such as 2D-strings is that in general they are not rota-
tion invariant. Therefore, El-Kwae et al. [9] propose a
robust Framework for Retrieving Images by Spatial Simi-
larity (FRISS). It can handle translation, scaling, perfect
rotation (all objects in the image are rotated around a ref-
erence point with the same angle), multiple rotation (objects
are rotated around a reference point with different angles).
Furthermore, it takes into account topological relations be-
tween the objects and shape-based similarities.

A popular alternative that has also been applied in this
paper is the graph representation. Gudivada and Raghavan
[13] propose spatial orientation graphs (SOG’s), in which
each vertex represents an object and the edges between
them are weighted with the slope of the line connecting the
two centres of mass. The distance between two graphs is
calculated by finding the angle between each pair of corre-
sponding edges. ImageMap [22] proposed by Petrakis and
Faloutsos extends this idea. The images are represented by
attributed relational graphs (ARG’s), storing object size,
orientation, and roundness in the nodes and distance, an-
gle, and contains-relationships in the edges. This approach
first computes an n × n distance matrix, where each entry
corresponds to the graph-edit distance between its corre-
sponding graph pairs. The graphs are then embedded into
an f -dimensional space (target space) using Fastmap [10]
such that the distances in the target space are approximately
equal to those in the original graph space. The method for-
mulates the image retrieval problem as that of range search
in the target space. The embedding process in this method
does not preserve the distances exactly, but the distances
are distorted up to a certain degree. Although powerful, the
method suffers from the limitations of the graph-edit dis-
tance approach. Specifically, if the graphs are not trees then
the graph distances cannot be computed in polynomial-time
using this approach. In addition, due to the fact that the
graph-edit distance does not deal well with the occlusion, it
is not clear how this indexing schema performs against noise
and occlusions.

2.2 Graph indexing and spectral methods
Our method deploys a graph representation for encod-

ing a trademark’s layout. The problem of retrieving similar
graphs to a given query may be solved by finding graphs
that are isomorphic to the query or one of its subgraphs.
One important indexing method solving this problem is a
decision tree approach. Here, the goal is to hierarchically
partition the database so that the query is first matched to
the root. Depending on the result of this match, the query
is then matched to either the right or the left child of the
root. This process is repeated recursively until a match is
found at an internal node (or leaf), or it exits with a fail-
ure indicating that no database graphs are isomorphic to
the query. Messmer and Bunke [19] use this approach to
organise the set of all permutations of the adjacency ma-
trix of database graphs in a decision tree. At run time, the
(sub)graph isomorphisms from the query to the database
graphs are found by a decision tree traversal. A significant
drawback of this method is its space requirement. All per-
mutations of the adjacency matrix have to be encoded in
decision trees, whose sizes grow exponentially with the size
of the database graph. A set of pruning techniques is dis-
cussed to cut down the space complexity.

Although indexing methods with (sub)graph isomorphism
detection algorithms are effective, due to noise, occlusion, or
segmentation errors, no (sub)graph isomorphism may exist
between the query and the database. Furthermore, only
a certain degree of similarity between two graphs may be
present. The indexing problem, therefore, is reformulated as
efficiently retrieving database graphs whose (sub)structure
is similar to the query. Although considerable research has
been devoted to the problem of inexact (or error-tolerant)
graph matching, rather less attention has been paid to this
type of indexing based on graph structures.

An indexing framework related to the approach reported
in this paper is that of Shokoufandeh et al. [26]. This
framework is designed especially for tree structures in which
the sum of the largest eigenvalues of the adjacency ma-
trix for each subtree of the root form the component of
its δ−dimensional vector, where δ is the root degree. To
account for occlusion and local deformation, these vectors
are also computed for the root of each subtree. At indexing
time, each non-leaf node of the query is represented as such
a vector, and a nearest neighbour search is performed for
each vector. Although effective, by summing up the largest
eigenvalues one loses uniqueness, resulting in less represen-
tative graphs in the vector space.

3. CLOSED SHAPE IDENTIFICATION
Prior to the encoding of layout in graphs, we require a

shape identification algorithm to segment the trademark
into separate closed shapes. For this evaluation, we use a
simplified version of our adapted algorithm [15]. The simpli-
fied version aims to find just the basic shapes present in an
image as the graph layout matching requires only the basic
shapes.

Our closed shape algorithm requires an underlying tech-
nique to identify the line segments within an image and to
detect the relationships between those line segments. The
closed shape identifier then uses this output to identify the
closed shapes. Therefore, we initially find the edges in an
image and subdivide these into constant curvature segments
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using the Sarkar & Boyer [24] edge detection algorithm and
the Wuescher & Boyer [28] curve segmentation algorithm.
These methods are used as they have been successfully used
in the trademark system developed by Alwis [1]. The Sarkar
& Boyer method finds the edge lines in an image and splits
these lines into primitives. Wuescher & Boyer aggregates
these primitives into more perceptually-oriented constant
curvature segments. These segments thus provide the build-
ing blocks for our closed shape identifier. From these con-
stant curvature segments, we produce a graph of segment
relations. Each constant curvature segment becomes a node
in the graph with two ends (first point (denoted as an x,
y coordinate) and last point (also denoted as an x, y co-
ordinate)). In our simplified implementation here, we find
all segments that are end-point proximal within two pixels
length. This effectively joins the graph by linking the prox-
imal end-points. The resulting graph underpins the closed
shape identification algorithm.

Our closed shape algorithm overlays this graph. Saund’s
approach focuses on managing the search of possible path
continuations through the graph, particularly where the graph
nodes represent junctions (crossroads, T-junctions etc) of
lines in the original image. We use the same technique here.
The closed path search commences from each end (first and
last) of each node (line segment) identified by the underlying
Wuescher & Boyer algorithm. For each end (first then last)
in turn, all possible paths are followed. This effectively forms
a search tree with paths through the tree representing the
paths of candidate shapes. The search is managed through
the use of Saund’s local criteria [25] (scores) for ranking
possible paths through junctions. Saund derived the scores
from observations. These scores prioritise which node to ex-
pand next. As each leaf node in the tree is expanded, any
new child nodes are compared with child nodes in the oppo-
site side of the tree. If they are end-point proximal then a
closed path has been identified and its nodes and pixels are
added to the list of candidate paths. To produce the set of
shapes for each image in this paper, we accept all candidate
paths. However, closed paths that are subsumed by other
closed paths with higher scores are discarded. Hence, each
new closed path is compared to all existing stored paths.
If the new path is equivalent to an existing path but has
lower score then the new path is discarded. If the new path
has higher score than the existing saved path then the saved
path is discarded.

In our simplified approach used in this paper, we have in-
cluded three changes from our usual method. We measure
end-point proximity as within a 2 pixels length, normally
we use Lowe’s method [18] to extract endpoint proximity
which is more perceptually plausible as it uses the ratio of
line length to gap length [15] to decide when two lines are
end-point proximal. We keep all candidate paths that are
not subsumed, normally we use a minimum score threshold
to identify plausible shapes as our previous approach [15]
is aimed at identifying shapes perceived using Gestalt prin-
ciples. Finally, we keep all paths as our set of shapes for
the image, normally we use a global goodness score to as-
sess perceptual relevance and discard perceptually irrelevant
shapes (see [15]).

4. ENCODING LAYOUT IN GRAPHS
Our indexing schema can handle graphs carrying different

kinds of layout information. In the experiments conducted

for this paper, the vertices in the graphs correspond to the
shapes in the trademark image, and the edges between them
carry relations between them. Foremost, we encode the di-
rectional information (in the form of both primary and sec-
ondary directions). Rotational invariance can be achieved
on demand, by neglecting for instance the difference between
a south-north edge and a east-west edge. Furthermore, we
are interested in detecting certain basic layout configura-
tions that often occur in trademarks, such as triangular, cir-
cular or square configurations. If one or more of these types
of layout are present in a trademark, they are encoded in
the appropriate edges too.

The trademarks are segmented into individual shapes us-
ing the method described in the previous section. After
this stage, their centroids are used as shape representatives
to calculate the appropriate information and determine the
edge labels. Each shape is connected to its n nearest neigh-
bors, where n is a user defined parameter. The first step is
to calculate the angle between the horizontal axis and a line
connecting two centroids to determine the directional label
for this edge. In principle there are eight possible directions
(4 primary and 4 secondary), but the edges are undirected
so there are four possible directions for each edge.

The next step is to detect the special pattern ’square’.
This is done by performing a template match on the direc-
tional graph with a template representing a configuration of
four shapes in a 2 × 2 square. Whenever this template is
found, the edge labels are updated accordingly from the di-
rectional information to the special edge type square. Note
that the square needs to be isolated to a certain extent;
e.g. a grid is not a large collection of squares according to
this definition. The same kind of template matching is per-
formed for triangular and circular configurations. The deci-
sion of triangularity depends on the angles between the pos-
sibly triangular edges. Since every triplet of objects forms
a triangle by definition, only the edges of a perfect triangle
(or close to a perfect triangle) are labeled with the special
triangle edge type. To detect circular configurations, the fol-
lowing circularity criterion is evaluated on the convex hull of
the shape centroids: 4πA�ρ2, where A is the area and ρ is
the perimeter of the convex hull. A threshold is set on the
outcome of this circularity criterion to determine whether
the edges on the convex hull need to be labeled with the
special circular type or not.

In the experiments, the trademarks in our dataset are clas-
sified based on their layouts, not on the shapes they consist
of. This classification was used to measure the retrieval
performance. Since trademark retrieval and similarity are
complex issues involving specific knowledge of perception
and trademark logic, we presented our classification to a
group of experts at Aktor Knowledge Technology who ex-
amine trademark similarity in commercial surroundings on
a daily basis. It was only after their concise inspection of
our dataset and classification, that we could be sure con-
ducting our experiments and measuring performance are in
correspondence with the real trademark similarities.

5. INDEXING VIA LAPLACIAN SPECTRA
Given a query graph and a large database, the objective

of an indexing algorithm is to efficiently retrieve a small
set of candidates, which share topological similarity with
the query or one of its subgraphs. In our framework, we
encode the topology of a graph through its laplacian spec-
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trum. The laplacian matrix L(G) of graph G is computed
as L(G) = D(G)− A(G), where D(G) is the degree matrix
and A(G) is the adjacency matrix for G. The spectrum of a
graph’s laplacian matrix is obtained from its eigendecompo-
sition. More formally, the eigendecomposition of a laplacian
matrix is L(G) = PΛP T , where Λ = diag (λ1, λ2, . . . , λ|V |)
is the diagonal matrix with the eigenvalues in increasing or-
der and P = (p1|p2| . . . |p|V |) is the matrix with the ordered
eigenvectors as columns. The laplacian spectrum is the set
of eigenvalues {λ1, λ2, . . . , λ|V |}.

Our main motivation for encoding the topology of a graph
using the lapcacian rather than the adjacency matrix as
done by earlier work [26] comes from the fact that lapla-
cian matrices are more natural, more important, and more
informative about the input graphs [20]. Previously, Godsil
and McKay [11] and more recently Haemers and Spence [14]
have also shown that the laplacian matrix has more repre-
sentational power than the adjacency matrix, i.e., it results
in less number of cospectral graphs. Recall that two graphs
are called cospectral (or, isospectral) if they have the same
eigenvalues.

In our framework, we define the signature of a graph as the
sorted eigenvalues of its laplacian matrix. To compute the
similarity between two graphs, we compute the Euclidean
distance between their signatures, which is inversely pro-
portional to the structural similarity of the graphs. For a
given query, retrieving its similar graphs, therefore, can be
reduced to a nearest neighbor search among a set of points.

Unfortunately, this formulation cannot deal with occlu-
sion or segmentation errors as two graphs may share similar
structures up to only some level. Although adding or re-
moving edges changes the laplacian spectrum, the spectrum
of the subgraphs that survive such alteration will not be af-
fected. Our indexing mechanism, therefore, cannot depend
on the signature of the whole graph only. Instead, we will
combine the signatures of the subgraphs in the framework.

Let G = (V, E) be a graph and let G′ be a graph obtained
from G by adding a new edge e′ such that e′ /∈ E. Then the
following theorem, known as the interlacing theorem, relates
the laplacian spectrum of both graphs 3.

Theorem 1. The eigenvalues of G and G′ interlace:

0 = λ1(G) = λ1(G
′) ≤ λ2(G) ≤ λ2(G

′) ≤

. . . ≤ λn(G) ≤ λn(G′).

In addition, it is known that
∑n

i=1(λi(G
′)− λi(G)) = 2 [2].

Therefore, at least one inequality is strict. Overall this the-
orem implies the following. Assume that we are given a pair
of isomorphic graphs g1 and g2. If we construct G1 and
G2 out of g1 and g2 by adding different edges to each of
them, one at a time, the laplacian spectra of G1 and G2 be-
come proportionally less similar. As a result, the similarity
between the signatures of G1 and G2 may not reflect the
similarity between the signatures of their subgraphs g1 and
g2. This shows that constructing an indexing mechanism
based on graph signatures alone is too weak. An ideal in-
dexing framework should, in fact, select candidate database
elements based on both local and global similarities. To ac-
count for both local and global information, we will adopt

3This theorem is obtained by Courant-Weyl ([6], Theorem
2.1). The reader may also refer to [12].

Figure 5: Retrieving similar graphs. For graphs
given in Part (a), its subgraphs are constructed in
Part (b). A signature is computed for each subgraph
in Part (c). Given a signature, retrieving its simi-
lar graphs from a large database is formulated as a
nearest neighbor search as shown in Part (d).

the following method analogous to that used in the decision
tree approach [19].

For a given database graph G = (V, E), rather than stor-
ing its signature in the system only, we compute the sig-
natures of each subgraph of G in our algorithm. In this
process, we gradually increase the size of the subgraphs.
Since the sorted eigenvalues are invariant under consistent
re-orderings of the graph’s vertices, it is sufficient to com-
pute the spectrum of permutation-similar matrices once.
This property avoids the need for a high-load compilation
process described for adjacency matrices in the decision tree
approach.

Associated with each signature in the system is a pointer
to the corresponding graph or subgraph in the database. At
runtime, we first generate the signature of each subgraph
of the query. Given a query signature sq, we retrieve its
nearest neighbors of the same size from the database through
a nearest neighbor search (see Figure 5). Each neighbor of
sq retrieved from the database gets a vote whose value is
inversely proportional to the distance from sq. Thus, as a
result, each signature of the query generates a set of votes.
Moreover, we weigh the votes according to the size of the
subgraphs corresponding to the signatures, i.e., the bigger
the size, the more weight the vote receives.

Our encoding of a graph’s structure captures its local
topology, thus allowing for its use in the case of occlusion
and segmentation errors. Furthermore, the signature of a
graph is invariant under the reorderings of its vertices. This,
in turn, allows us to compare the signatures of a large num-
ber of graphs without solving the computationally expensive
correspondence problem between their vertices. In addition,
based on Theorem 1, not only do isomorphic graphs share
the same signature, non-isomorphic but similar graphs or
subgraphs have close signatures in the vector space. The
database, therefore, can be pruned without losing struc-
turally similar graphs to the query.

6. EXPERIMENTS
In this section we evaluate our framework in the context of

a trademark retrieval experiment. We use a set of 450 trade-
mark images from the UK PTO dataset used in the Artisan
project [7]. Figure 6 shows some trademark images used in
the experiments. We begin by representing the layout of
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Figure 6: Some trademark images used in the ex-
periments.

each image in the database as a graph. Given a graph, we
compute the signatures for each of its subgraphs and popu-
late the resulting signatures in the vector space. We applied
the following leave-one-out procedure to the datasets to eval-
uate the framework in the experiments. We initially remove
the first graph from the database and use it as a query for
the remaining database graphs. The graph is then put back
in the database and the procedure is repeated with the sec-
ond graph from the database, etc., until all database graphs
have been used as a query.

To check our segmentation and automatic graph construc-
tion procedures, the graph representation process was also
performed manually in our experimental setup. Specifically,
we manually selected shapes for each input trademark im-
age, created a vertex for each shape, and connected two ver-
tices by an edge if the layout of the corresponding shapes
should be encoded in the graph based on the human per-
ception. As a result, one manually and one automatically
constructed graph datasets have been generated. The per-
formance of the proposed indexing algorithm was evaluated
for each dataset.

Precision and recall are two well-known performance mea-
sures to compute the quality of an indexing mechanism. In
high precision, relevant items are in the top of the ranking,
whereas in high recall, false negatives are avoided and the
returned result contains all relevant objects. A good index-
ing system should, in fact, perform well according to both of
these two measures. We conducted two sets of experiments
to cover both scenarios. In the first experiment, our goal
is to quickly determine the class of the query. In the sec-
ond experiment, the objective is to return a small candidate
set, which contains all the objects belonging to the query
class. In both experiments, the indexing system ranks the
database graphs in decreasing order of similarity from each
query graph. According to the results, in 98.4% and 89.1%
of the cases, the most similar database graph belongs to the
correct shape class for manually constructed and automat-
ically constructed datasets, respectively (nearest-neighbor
rates). In addition, the worst position of the closest match-
ing graph is 5 for manual graphs, while this number is 9
for automatic graphs. These numbers show that 98% of
the datasets can be pruned by the indexing mechanism to
determine the correct layout class for a query. In the sec-
ond experiment, the system’s performance was evaluated by
computing the total number of retrieved images that is nec-
essary to retrieve the entire query class (maximum minimal
scope). Our results show that the first 71 of the candidate
return set always contains all the graphs belonging to the
query class for manual graphs; this number is 80 for auto-
matic graphs. This indicates that for this task our frame-
work prunes more than 84% and 82% of the manual and
automatic graph datasets, respectively. In other words, the

recall in each dataset is 100% if the scope is set to the first
16% and 18% of the sorted candidate models for manual
and automatic graphs respectively. We also computed how
many of the models in the query’s class appear within the
top K − 1 matches, where K is the size of the query class
(first tier). This number was 91.2% for manual graphs and
86.3% for automatic graphs. Repeating the same experi-
ment but considering the top 2 × K − 1 matches (second
tier) covers 98.1% and 91.7% members of the layout classes
for manual and automatic graph datasets, respectively.

In Table 1, we have presented the matching results for a
small subset of trademark images whose graphs were gener-
ated automatically using our approach. The first column of
each row represents the query image; the remaining elements
of each row show the top 10 closest database trademarks
retrieved by our indexing algorithm. Squares are drawn
around the wrong matches. In all but once case (row 5) the
closest trademark image belongs to the same layout class
as the query. Although the closest match for the query in
row 5 was classified as a mismatch, one may notice that
the query consists of three sets of small squares on top of
each other and each set has the same layout as the mis-
match. As another example, consider the query in row 8 of
the left-right class and its first mismatch of the triangle class.
Notice that three small triangles in the mismatch have the
same layout as the query. Overall, rather than focusing on
the mismatches that occur because of the result of a partial
match, we observed that the wrong selections happen mainly
due to the poor segmentation of the trademark. If different
shapes in a trademark are connected, for instance, our seg-
mentation algorithm detects them as one shape. Thus, the
layout within these shapes are not encoded in the graphs.
We will extend our segmentation technique to region-based
and will use it within our framework in the future.

7. CONCLUDING REMARKS
In this paper we have presented a framework for retriev-

ing trademark images based on spatial layout of the shapes.
Besides pure shape similarity between trademark images,
similarities in configuration of the shapes may also give rise
to a conflict of uniqueness. The process of content based
trademark retrieval, therefore, can be significantly improved
by taking into account these layout features, enabling a
stronger prevention of trademark infringement.

In our framework, trademark images are first segmented
into closed, distinct shapes. This segmentation is line based;
after an initial edge detection step, the shape boundaries are
subdivided into constant curvature segments. These seg-
ments are then aggregated to more perceptually relevant
primitives, which form the input blocks for the closed shape
identifier. By searching for closed paths in the primitives,
the shapes are returned and passed on to the next layer of
our framework, the construction of a layout graph.

The centroids of the shapes are taken as shape represen-
tatives while constructing a graph that reflects the layout of
the trademark. Each shape is represented by a vertex, and
connected to a predefined number of nearest neighbors, and
layout information is stored in the edges that connect these
vertices. After the graph construction, the laplacian ma-
trix is taken (by subtracting the adjacency matrix from the
degree matrix) and its spectrum is computed. Every trade-
mark is then stored in a database, by populating a vector
space with the laplacian spectra. The laplacian spectrum
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Query Top 10 Matched Images

Table 1: Top matched models are sorted by the similarity to the query.
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reflects important properties of the graph and its topology.
Besides computing the laplacian spectrum of the complete
graph, we also store this feature vector for every possible
subgraph to perform partial matching.

We evaluated our framework on a test collection of 450
real trademark images and the results are promising. First
and second tier results, averaged over all possible queries,
were 86.3% and 81.7% respectively. It is one of our future
works to extend the test collection and perform a compari-
son with other, known layout indexing techniques. Further-
more, we want to take into account topological information
as well, besides the directional information and special con-
figurations that are encoded now. Finally, we will use a
region-based segmentation algorithm within our framework
to reduce the number of mismatches that occured because
of the current line-based segmentation procedure.
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ABSTRACT
This work shows that it is possible to exploit text and im-
age content characteristics of logo and trademark images
in Web pages for enhancing the performance of retrievals on
the Web. Searching for important (authoritative) Web pages
and images is a desirable feature of many Web search en-
gines and is also taken into account. State-of-the-art meth-
ods for assigning higher ranking to important Web pages,
over other Web pages satisfying the query selection crite-
ria, are considered and evaluated. PicASHOW exploits this
idea in retrieval of important images on the Web using link
information alone. WPicASHOW (Weighted PicASHOW),
is a weighted scheme for co-citation analysis incorporating
within the link analysis method of PicASHOW the text and
image content of the queries and of the Web pages. The
experimental results demonstrate that Web search methods
utilizing content information (or combination of content and
link information) perform significantly better than methods
using link information alone.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing—Abstracting methods, Index-
ing methods; I.5.4 [Pattern Recognition]: Applications—
Computer Vision

General Terms
Performance, Experimentation, Algorithms

Keywords
image retrieval, logo, trademark, feature extraction, author-
ity, link analysis

1. INTRODUCTION
The World Wide Web is host to millions of images on ev-

ery conceivable topic. The images are used to enhance the
information content of Web pages, capture the attention of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR’07, July 9–11, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-733-9/07/0007 ...$5.00.

users or to reduce the textual content of Web sites. In sci-
entific, artistic, technical, or corporate Web sites, images
comprise the majority of digital content and are character-
istic of the content and type of these Web sites.

Searching for effective methods to retrieve images from
the Web has been in the center of many scientific efforts dur-
ing the last few years [9]. The relevant technology evolved
rapidly also thanks to prior advances in Web systems tech-
nology [1], information retrieval [16] and image database
research [20, 17]. Several approaches to the problem of
content-based image retrieval on the Web have been pro-
posed and some have been implemented on research proto-
types (e.g., PicToSeek [6], ImageRover [24],WebSEEK [21],
Diogenis [2]) and commercial systems. The last category of
systems, includes general purpose image search engines such
as Google Image Search 1, Yahoo 2, Altavista 3, Ditto 4 etc.)
as well as systems providing specific services to users such
as unauthorized use of images (e.g., CreativePro 5), Web
and e-mail content filters, systems for image authentication
(e.g., Dicontas 6), licensing and advertising (e.g., Corbis 7).

This work deals with the problem of retrieval of logo and
trademark images on the Web. Logos and trademarks in
particular are important characteristic signs of corporate
Web sites or of products presented there. A recent anal-
ysis of Web content [7] reports that logos and trademarks
comprise 32,6% of the total number of images on the Web.
Therefore, retrieval of logo and trademarks is of significant
commercial interest (e.g., Patent Offices provide services on
unauthorized uses of logos and trademarks).

The contribution of this work is not only in using exist-
ing technology for solving the retrieval problem but also, in
showing how to exploit the content characteristics of logo
and trademarks for enhancing the performance of retrievals
on the Web. Retrieval by image content, in particular, re-
quires integration of text and image based approaches for
analyzing the content of Web pages.

Logo and trademark images are easier (than natural im-
ages) to describe by low level features (intensity, frequency
histograms and features computed on the above types of his-
tograms). Because images on the Web are not properly cat-
egorized, filters based on machine learning by decision trees
for distinguishing logo and trademark images from images

1http://www.google.com/imghp
2http://images.search.yahoo.com
3http://www.altavista.com/image
4http://www.ditto.com
5http://www.creativepro.com
6http://www.dicontas.co.uk
7http://www.corbis.com
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of other categories (e.g., graphics, photographs, diagrams,
landscapes) are designed and implemented. The decision
tree demonstrated classification accuracy as high as 85%.

Once logo and trademark images are detected, effective
content-based image retrieval on the Web often requires that
important (authoritative) images satisfying the query selec-
tion criteria are assigned higher ranking over other relevant
images. This is achieved by exploiting the results of link
analysis for re-ranking the results of retrieval. Classical link
analysis methods such as HITS [10] and PageRank [13]
estimate the quality of Web pages and the topic relevance
between the Web pages and the query. These methods es-
timate the importance of Web pages as a whole. PicAS-
HOW [11], in particular, shows how to estimate the im-
portance of images contained within Web pages. However,
PicASHOW does not show how to handle image content
and queries by image example. This is solved by WPicAS-
HOW [26] (Weighted PicASHOW) a weighted scheme for
co-citation analysis that incorporates, within the link anal-
ysis method of PicASHOW, the text and image content of
the queries and of the Web pages.

Existing approaches for handling logos and trademarks [8,
12] focus entirely on image content analysis and high pre-
cision answers to queries by image example on stand-alone
data sets. They don’t focus on detection (i.e., discrimination
between trademark and not trademark images) nor do they
show how to retrieve high quality answers from the Web.

The methods referred to above are implemented and eval-
uated in IntelliSearch 8 [25], a complete and fully automated
information retrieval system for the Web. It supports fast
and accurate responses to queries addressing text and im-
ages in Web pages by incorporating state-of-the-art image
indexing and retrieval methods by text (e.g., the Vector
Space Model) in conjunction with efficient ranking of Web
pages and images by importance (authority) such as WPi-
cASHOW. IntelliSearch stores a crawl of the Web with more
than 1,5 million Web pages with images. It offers an ideal
test-bed for experimentation and training and serves as a
framework for a realistic evaluation of many Web image re-
trieval methods. The experimental results demonstrate that
giving higher ranking to important images seems to reduce
the accuracy of retrievals (the important images are not al-
ways the most relevant ones).

The rest of this paper is organized as follows: Extrac-
tion of meaningful image descriptions from Web pages and
image similarity measures based on the matching of image
descriptions are discussed in Section 2. PicASHOW and
WPicASHOW, the image authority searching methods con-
sidered in this work are presented in Section 3. IntelliSearch,
a content-based retrieval of logo and trademark images that
integrates the above ideas is presented in Section 4. Ex-
perimental results are presented and discussed in Section 5
followed by conclusions in Section 6.

2. IMAGE CONTENT REPRESENTATION
Logo and trademark images are easier to describe by low

level features (e.g., color histograms, text features). The
focus of this work is not on novel image feature extraction
but on showing how to search for logo and trademarks on the
Web for a given and well established set of features (such as
those used in [8, 12]). Logo and trademark images are easier
to describe by low level features (e.g., color histograms, text

8http://www.intelligence.tuc.gr/intellisearch

features).

2.1 Text Description
Typically, images are described by the text surrounding

them in the Web pages [19]. The following types of image
descriptive text are derived based on the analysis of html

formatting instructions:

Image Filename: The URL entry (with leading directory
names removed) in the src field of the img formatting
instruction.

Alternate Text: The text entry of the alt field in the img

formatting instruction. This text is displayed on the
browser (in place of the image), if the image fails to
load. This attribute is optional (i.e., is not always
present).

Page Title: The title of the Web page in which the image
is displayed. It is contained between the TITLE format-
ting instructions in the beginning of the document. It
is optional.

Image Caption: A sentence that describes the image. It
usually follows or precedes the image when it is dis-
played on the browser. Because it does not correspond
to any html formatting instruction it is derived either
as the text within the same table cell as the image
(i.e., between td formatting instructions) or within the
same paragraph as the image (i.e., between p format-
ting instructions). If neither case applies, the caption
is considered to be empty. In either case, the caption
is limited to 30 words before or after the reference to
the image file.

The following are two examples of html code, both with
a reference to image ”logo.gif”.

• . . .</td> <td> Our company’s logo <img
src=”logo.gif” alt=”software logo”> <br> . . .</td>
<td> is registered since 1990 . . .</td> <td>.

• . . .<p> Our company’s logo </p> <a
href=”logo.gif”>logo</a> <p> is registered since
1990 </p>.

All descriptions are lexically analyzed and reduced into
term (noun) vectors. First, all terms are reduced into their
morphological roots, using the Porter [15] suffix stripping
(stemming) algorithm. Similarly, text queries are also trans-
formed to term vectors and matched against image term
vectors according to the vector space model. More specifi-
cally, the similarity between the query Q and the image I
is computed as a weighted sum of similarities between their
corresponding term vectors

Stext(Q, T ) =
Sfile name(Q, I) + Salternate text(Q, I) +
Spage title(Q, I) + Simage caption(Q, I).

(1)

Each S term is computed as a weighted sum of tf · idf terms
without normalizing by query term frequencies (it is not re-
quired for short queries). All measures above are normalized
on [0,1].
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2.2 Image Content Descriptions
Image content is described in terms of features computed

from raw images. All images are converted to grey scale.
For logo and trademark images the following features are
computed:

Intensity Histogram: Shows the distribution of intensi-
ties over the whole range of intensity values ([0..255]
in this work).

Energy Spectrum [22]: Describes the image by its fre-
quency content. It is computed as a histogram showing
the distribution of average energy over 256 co-centric
rings (with the largest ring fitting the largest inscribed
circle of the DFT spectrum).

Moment Invariants [23]: Describes the image by its spa-
tial arrangement of intensities. It is a vector of 7 mo-
ment coefficients.

The above representations are used to solve the following
two problems:

Logo-Trademark Detection: A five-dimensional vector
is formed from each image: Each image is specified
by the mean and variance of its Intensity and Energy
spectrums plus a count of the number of distinct in-
tensities per image. A set of 1,000 image examples is
formed consisting of 500 logo-trademark images and
500 images of other types. Images of other types can
belong to more than one class: non-logo graphics, pho-
tographs, diagrams etc. Their feature vectors are fed
into a decision-tree [27] which is trained to detect logo
and trademark images. The estimated classification
accuracy by the algorithm is 85%. For each image the
decision computes an estimate of its likelihood of being
logo or trademark or “Logo-Trademark Probability”.

Logo-Trademark Similarity: The similarity between
two images Q, I (e.g., query and a Web image) is
computed as

Simage(Q, I) =
Sintensity spectrum(Q, I) + Senergy spectrum(Q, I)+
Smoment invariants(Q, I).

(2)
The similarity between histograms is computed by
their intersection [5] whereas the similarity between
their moment invariant is computed as 1 - Eu-
clidean vector distance.

All measures above are normalized to lie in the interval [0,
1]. To answer queries consisting of both text and example
image, the similarity between a query Q and an image I is
computed as

w = λSimage(Q, I) + (1− λ)Stext(Q, I), (3)

where λ denotes the relative significance of image and text
descriptions. In this work λ = 0.5. More appropriate
weights may be specified by machine learning.

3. IMAGE LINK ANALYSIS METHODS
Co-citation analysis is proposed as a tool for assigning im-

portance to pages or for estimating the similarity between a
query and a Web page. The main idea behind this approach
is that a link from page a to page b may be regarded as a
reference from the author of a to b.

pages

P4

P3

P1

P2
...........

..........

co−contained images

images in co−cited

P5

Figure 1: An example of a focused graph with co-
contained and co-cited images.

The main idea behind co-citation analysis is that the num-
ber and quality of references to a page provide an estimate
of the quality of the page and also a suggestion of relevance
of its contents with the contents of the pages pointing to
it. HITS [10] exploits this information to estimate the
relevance between a query and a Web page and ranking of
this page among other relevant pages. Building upon the
same idea, PicASHOW [11] demonstrates how to retrieve
high quality Web images on the topic of a keyword-based
query. It does not show how to process queries by example
image. This is exactly the focus of this work.

PicASHOW relies on the idea that images co-contained
or co-cited by Web pages are likely to be related to the
same topic. Figure 1 illustrates examples of co-contained
and co-cited images. PicAHOW computes authority and
hub values by link analysis on the query focused graph F (i.e.,
a set of pages formed by initial query results expanded by
backward and forward links). PicASHOW filters out from
F non-informative images such as banners, logo, trademarks
and “stop images” (bars, buttons, mail-boxes etc.) from the
query focused graph utilizing simple heuristics such as small
file size.

PicASHOW introduces the following adjacency matrices
defined on the set of pages in the query focused graph:

W: The page to page adjacency matrix (as in HITS) relating
each page in F with the pages it points to. The rows
and the columns in W are indices to pages in F . Then,
wij = 1 if page i points to page j; 0 otherwise.

M: The page to image adjacency matrix relating each page
in F with the images it contains. The rows and the
columns in M are indices to pages and images in F
respectively. Then, mij = 1 if page i points to (or
contains) image j.

(W + I)M: The page to image adjacency matrix (I is the
identity matrix) relating each page in F both, with
the images it contains and with the images contained
in pages it points to.

Similarly to HITS, PicASHOW defines the so called im-
age co-citation [(W + I)M]T · (M+ I)W and bibliographic
(W + I)M) · [(W + I)M]T matrices respectively. The ij-
th entry of the image co-citation matrix is the number of
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P1 P2 P3 P4 P5

P1 0 0 1 1 0
P2 0 0 0 1 1
P3 0 0 0 0 0
P4 0 0 0 0 0
P5 0 0 0 0 0

P1 0 0 1 1 0 0
P2 0 0 0 0 0 0
P3 1 1 0 0 0 0
P4 0 0 0 0 1 0
P5 0 0 0 0 0 1

P1 1 1 1 1 1 0
P2 0 0 0 0 1 1
P3 1 1 0 0 0 0
P4 0 0 0 0 1 0
P5 0 0 0 0 0 1

Figure 2: Adjacency matrices W, M and (W + I)M
for the focused graph of Figure 1.

Image
Authorities 0.492 0.492 0.339 0.339 0.519 0.117

Page P1 P2 P3 P4 P5

Hubs 0.519 0.0001 0.854 0.001 0

Figure 3: Image Authority (top) and Hub values
(bottom) computed by WPicASHOW in response
to query ”Debian trademark”.

pages that jointly point to images with indices i and j. The
ij-th entry of the image bibliographic matric is the number
of images jointly referred to by pages i and j. PicASHOW
computes the answers to a query by ranking the elements of
the principal eigenvector of the image co-citation matrix by
their authority values.

Figure 2 illustrates these matrices for the pages
(P1, P2, . . . P5) and images of Figure 1. Notice that, in Pi-
cASHOW all non-zero values in M, W and (W + I)M ma-
trices are 1 (non normalized weights). Figure 3 illustrates
authority and hub values computed by PicASHOW in re-
sponse to query “Debian logo”. Notice the high authority
scores of pages showing logo or trademark images of “Debian
Linux”. Notice that Mozila trademark has higher authority
value than Debian trademark.

Hub and Authority values of images are com-
puted as the principal eigenvectors of the image-co-
citation [(W + I)M]T · (W + I)M and bibliographic ma-
trices (W + I)M) · [(W + I)M]T respectively. The higher
the authority value of an image the higher its likelihood of
being relevant to the query.

PicASHOW can answer queries on a given topic but, sim-
ilarly to HITS, it suffers from the following problems [4]:

Mutual reinforcement between hosts: Encountered
when a single page on a host points to multiple pages
on another host or the reverse (when multiple pages
on a host point to a single page on another host).

Topic drift: Encountered when the query focused graph
contains pages not relevant to the query. Then, the
highest authority and hub pages tend not to be related
to the topic of the query.

PicASHOW does not handle mutual reinforcement be-
tween nodes (except that it constraints the number of ref-
erences per image to one by identifying replicated images)
and topic drift nor does it handle queries by example. WPi-
cASHOW handles all these issues:

Mutual reinforcement is handled by normalizing the
weights of nodes pointing to k by 1/k. Similarly, the
weights of all l pages pointing to the same page are
normalized by 1/l. An additional improvement is to
purge all intra-domain links except links from pages to
their contained images.

Topic Drift is handled by regulating the influence of nodes
by setting weights on links between pages. The links of
the page-to-page relation W are assigned a relevance
value computed according to the vector space model
as the similarity between the term vector of the query
and the term vector of the anchor text on the link be-
tween the two pages. The weights of the page-to-image
relation matrix M are computed depending on query
type: For text (e.g., keyword) queries the weights are
computed according to Equation 1 (as the similarity
between the query and the descriptive text of an im-
age). For queries combining text and image example,
the weights are computed according to Equation 3 (as
the average of similarities between the text and image
contents of the query and the image respectively).

Queries may be formulated either by keywords (or
phrases) or by a combination of keywords and image ex-
ample. In both cases of image queries, WPicASHOW starts
by formulating the query focused graph as follows:

• An initial set S of images is retrieved. These are im-
ages contained or pointed to by pages matching the
query keywords according to Equation 1.

• Stop images (banners, buttons, etc.) and images with
logo-trademark probability less than 0.5 are ignored.
At most T images are retained and this limits the size
of the query focused graph (T = 10, 000 in this work).

• The set S is expanded to include pages pointing to
images in S.

• The set S is further expanded to include pages and
images that point to pages or images already in S. To
limit the influence of very popular sites, for each page
in S, at most t (t = 100 in this work) new pages are
included.

• The last two steps are repeated until S contains T
pages and images.

WPicASHOW then builds M, W and (W + I)M matri-
ces for information in S. Figure 4 illustrates these matrices
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P1 P2 P3 P4 P5

P1 0 0 .6 .1 0
P2 0 0 0 .1 .1
P3 0 0 0 0 0
P4 0 0 0 0 0
P5 0 0 0 0 0

P1 0 0 .1 .1 0 0
P2 0 0 0 0 0 0
P3 .8 .7 0 0 0 0
P4 0 0 0 0 .2 0
P5 0 0 0 0 0 .15

P1 .48 .42 .1 .1 .02 0
P2 0 0 0 0 .02 .015
P3 .8 .7 0 0 0 0
P4 0 0 0 0 .2 0
P5 0 0 0 0 0 .15

Figure 4: Adjacency matrices M, W and (M+ I)W
for the focused graph of Figure 1 corresponding to
query “Debian logo”.

Image
Authorities .751 .657 .0418 .0418 .008 0

Page P1 P2 P3 P4 P5

Hubs .519 .0001 .854 .001 0

Figure 5: Image Authority (top) and Hub values
(bottom) computed by WPicASHOW in response
to query ”Debian logo”.

for the same pages and images of Figure 1 with weights cor-
responding to query “Debian logo”.

Figure 3 illustrates authority and hub values computed by
WPicASHOW in response to query “Debian logo”. Notice
the trademark images of “Debian Linux” are assigned the
highest authority values followed by the images of Mozilla
Firefox.

4. INTELLISEARCH
IntelliSearch [25] is implemented in Java under Linux.

Figure 6 illustrates the architecture of the proposed system.
IntelliSearch consists of several modules, the most important
of them being the following:

Crawler module: Implemented based upon Larbin 9, the
crawler assembled locally a collection of 1,5 million
pages with images. The crawler started its recursive
visit of the Web from a set of 14,000 pages which is
assembled from the answers of Google image search10

to 20 queries on topics related to Linux and Linux

9http://larbin.sourceforge.net
10http://www.google.com/imghp

Query
Answers

Link Analysis

CrawlerWWW
Text Analysis

Image Analysis

Index
TextDocument

Database

Connectivity
Server

Hash
URL

Storage

Collection Analysis

Query Method

Query

Retrieval

Figure 6: IntelliSearch Architecture.

products. The crawler worked recursively in breadth-
first order and visited pages up to depth 5 links from
each origin.

Collection analysis module: The content of crawled
pages is analyzed. Text, images, link information (for-
ward links) and information for pages that belong to
the same site is extracted.

Storage module: Implements storage structures and in-
dices providing fast access to Web pages and informa-
tion extracted from Web pages (i.e., text, image de-
scriptions and links). For each page, except from raw
text and images, the following information is stored
and indexed: Page URLs, image descriptive text (i.e.,
alternate text, caption, title, image file name), terms
extracted from pages, term inter document frequencies
(i.e., term frequencies in the whole collection), term in-
tra document frequencies (i.e., term frequencies in im-
age descriptive text parts), link structure information
(i.e., backward and forward links). Image descriptions
are also stored.

term

(link information)
relationship

document to document

descriptive text
type of 

web page

title

document URL

frequency

inter document

intra document

stemmed term

frequency

image page text

specialization

image 
description

document to term relationship

N:M

1:N

N:M

Figure 7: The Entity Relational Diagram (ERD) of
the database.

The Entity Relationship Diagram (ERD) of the
database in Fig. 7 describes entities (i.e., Web pages)
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and relationships between entities. There are many-
to-many (denoted as N : M) relationships between
Web pages implied by the Web link structure (by for-
ward and backward links), one-to-many (denoted as
1 : N) relationships between Web pages and their con-
stituent text and images and N : M relationships be-
tween terms in image descriptive text parts and docu-
ments. The ERD also illustrates properties of entities
and relationships (i.e., page URLs for documents, titles
for page text, image content descriptions for images,
stemmed terms, inter and intra document frequencies
for terms in image descriptive text parts).

The database schema is implemented in BerkeleyDB 11

Java Edition. BerkeleyDB is an embedded database
engine providing a simple Application Programming
Interface (API) supporting efficient storage and re-
trieval of Java objects. The mapping of the ERD of
Fig. 7 to database files (Java objects) was implemented
using the Java Collections-style interface. Apache
Lucene12 is providing mechanisms (i.e., inverted files)
for indexing text and link information. There are
Hash tables for URLs and inverted files for terms and
link information. Two inverted files implement the
connectivity server [3] and provide fast access to link-
age information between pages (backward and forward
links) and two inverted files associate terms with their
intra and inter document frequencies and allow for fast
computation of term vectors.

Retrieval module: Queries are issued by keywords (or
free text) or by a combination of example image and
text. The user is prompted at the user interface to se-
lect mode of operation (retrieval of text pages or image
retrieval). All methods in Sec. 2.1 are implemented.

5. EXPERIMENTS
Different image retrieval methods are implemented and

evaluated. The competitor methods are:

PicASHOW [11]: Ranks Web images by exploiting co-
citation information only. It can answer only text
queries. Queries by example image (image queries)
are not supported.

WPicASHOW (weighted PicASHOW) [26]: Extends
PicASHOW to take into account, in addition to link
information, the text and image content of both the
queries and of the Web pages. It can answer both
text and image queries.

Vector Space Model (VSM) [18]: Text queries are
transformed to term vectors and matched against
term vectors extracted from database images. The
similarity between a query and a database image is
computed according to Equation 1. To answer queries
specifying text and image example, the similarity
between a query and a database image is computed
according to Equation 3.

For the evaluations, 20 characteristic queries of each type
are created on topics related to Linux and Linux products.
For each query the top 30 answers are retrieved. All perfor-
mance results are averages over 20 queries. The evaluation

11http://www.sleepycat.com
12http://lucene.apache.org

is based on human relevance judgments by a human sub-
ject. For each method, the subject inspected the answers of
each query and, for each answer, judged if it is similar to
the query or not. This is a highly subjective process. Two
or more methods may retrieve the same answer for the same
query, but the same answer (by mistake) may not be recog-
nized as similar when it is retrieved by different methods.
To obtain consistent evaluations a query and a retrieved im-
age are considered as similar if they are taken as similar by
at least one method.

To evaluate the effectiveness of each candidate method,
the following quantities are computed:

Precision, the percentage of relevant images retrieved with
respect to the number of retrieved images.

Recall, the percentage of relevant images retrieved with
respect to the total number of relevant images in the
database. Due to the large size of the data set, it
is practically impossible to compare every query with
each database image. To compute recall, for each
query, the answers obtained by all candidate meth-
ods are merged and this set is considered to contain
the total number of correct answers [14].

In the following, a precision-recall plot is presented for
each experiment. The horizontal axis in such a plot corre-
sponds to the measured recall while the vertical axis corre-
sponds to precision. Each method is represented by a curve.
Each query retrieves the best 30 answers (best matches) and
each point in a curve is the average over 20 queries. Preci-
sion and recall values are computed after each answer (from
1 to 30) and therefore, each curve contains exactly 30 points.
The top-left point of a precision/recall curve corresponds to
the precision/recall values for the best answer or best match
(which has rank 1) while the bottom right point corresponds
to the precision/recall values for the entire answer set.

A method is better than another if it achieves better pre-
cision and recall. It is possible for two (or more) precision-
recall curves to intersect. This means that one of the meth-
ods performs better for small answer sets (containing less
answers than the answer set at the intersection) while the
other performs better for larger answer sets. The method
achieving higher precision and recall for large answer sets is
considered to be the best method (the typical users retrieve
more than 10 or 20 images on the average).

Typically, image queries on the Web are issued through
the user interface by specifying keywords or free text queries
and the system returns images in Web pages with similar
keywords or text as descriptions. The highest complexity of
image queries is encountered in the case of queries by image
example: The user may specify an example image along with
a set of keywords or annotation expressing his information
needs.

5.1 Text Queries
In this experiment, each query is specified by a set of

keywords. All queries specified the term “logo”. An image
in the answer is considered similar to the query if they are
at the same topic (e.g., query “Linux logo” may retrieve the
logo of any Linux distribution (e.g., “Debian Linux”).

Figure 8 illustrates the precision/recall diagram of the
three candidate retrieval methods for text queries. PicAS-
HOW is obviously the worst method. This result indicates
that link information alone is not an effective descriptor for
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image content. The answers indeed contain a lot of irrele-
vant images. These are images that coexist within the same
high quality pages with other relevant images, or are pointed
to by high quality pages (e.g., pages of software companies).
WPicASHOW is more effective than PicASHOW achieving
up to 20% better recall and 15% better precision. WPicAS-
HOW assigned higher ranking to images whose surrounding
text is more relevant to the topic of the query. However,
VSM is the most effective method (except from the first 3
answers). This result indicates that the surrounding text is
a very effective descriptor of the image itself. This method
assigned higher ranking even to images contained or pointed
to by very low quality pages such as pages created by indi-
viduals or small companies.
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Figure 8: Precision-recall diagram for text queries
corresponding to PicASHOW, WPicASHOW and
the Vector Space Model.

5.2 Image Queries
Each query specifies a set of keywords along with an ex-

ample logo image. For each keyword query, an appropriate
logo is used as query. An image in the answer is consid-
ered similar only if its similar with the query image (e.q.,
query “Linux logo” with the penguin logo may only retrieve
images showing a Linux penguin logo.

PicASHOW cannot answer such queries. Figure 9 illus-
trates the precision/recall diagram of the remaining two
methods. The Vector Space Model is obviously far more
effective than WPicASHOW. An important observation is
that the performance gap between the two methods is wider
than that of keyword queries. A closer look into the answers
reveals that link analysis assigned higher ranking to Web
pages with more general content on the topic of the query.
The reason for this behavior is that Web pages with more
general content are more strongly connected than pages with
more specific topic. In this experiment, with the addition of
logo image, the queries become more specific than before and
WPicASHOW assigned higher ranking to more general but
irrelevant images although in many cases these images are
somehow related to the topic of the query (e.g., the “GNU”
head logo with the ”FSF” logo).

This behavior is in fact common to any link analysis
method. WPicASHOW, as any other link analysis method,
assigned higher ranking to higher quality but not necessary
relevant pages. High quality pages, on the other hand, may

be irrelevant to the content of the query. WPicASHOW
attempted to compromise between the two.

The size of the data set is also a problem in both exper-
iments. If the queries are very specific, the set of relevant
answers is small and within it, the set of high quality and
relevant answers are even smaller. The results may improve
with the size of the data set, implying that it is plausible
for the method to perform better when applied to the whole
Web.
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Figure 9: Precision-recall diagram for image queries
corresponding to WPicASHOW and the Vector
Space Model.

6. CONCLUSIONS AND FUTURE WORK
Existing approaches for handling logos and trademarks

(e.g., [8, 12]) focus entirely on image content analysis and
high precision answers to queries by image example but,
they neither focus on detection (i.e., discrimination between
trademark and non-trademark images) nor do they perform
retrievals on the Web by image content. This work han-
dles both these issues. Higher quality results are obtained
when more important (authoritative) Web pages are as-
signed higher ranking over less important pages. This work
implements PicASHOW and WPicASHOW, two well estab-
lished methods for image link analysis and retrieval on the
Web. Compared with PicASHOW, WPicASHOW allows
also for more sophisticated image queries such as queries by
example image in addition to text queries.

A complete prototype Web retrieval system for the re-
trieval of logo and trademark images is also designed and
implemented as part of this work. The system stores a crawl
of the Web rich in image and text content and offers the
framework for a realistic evaluation of many Web image re-
trieval methods including PicASHOW, WPicASHOW and
the Vector Space Model. The experimental results demon-
strate that WPicASHOW is far more effective than PicAS-
HOW, which uses link information alone. Link analysis im-
proved the quality of the results but not necessarily their
accuracy (at least for data sets smaller than the Web). The
analysis revealed that content relevance and searching for
authoritative answers can be traded-off against each other:
Giving higher ranking to important pages seems to reduce
the accuracy of the results.

Future work includes experimentation with larger data
sets and image types, more elaborate methods for logo
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and trademark detection and matching, and more elabo-
rate crawling methods for fetching pages more relevant to
the image type of the application (focused crawling) and
the design of Web interface for making the system accessing
to the public.
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ABSTRACT 
The availability of relevance feedback is held back by the 
problem of the imbalance and limited size of labeled 
training data, as well as the real-time requirement of 
online interaction demands. In this paper, we propose a 
relevance feedback algorithm called active biased SVM 
(BSVM) learning, in which biased classification and 
active learning are employed to address these difficulties. 
The algorithm is applied to content-based sketch retrieval 
(CBSR), and the experiments prove both the effectiveness 
and efficiency of the proposed approach. 
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Content-Based Sketch Retrieval (CBSR), Relevance 
Feedback, Active Learning, Biased SVM (BSVM) 
 
 
1. Introduction 
 
As more electronic pen-based devices have and continue 
to become available for entering and processing 
information, sketching turns into one of the most popular 
modalities of digital ink to provide natural and flexible 
interaction, while not hindering creative thinking [1]. The 
digital sketching data are appealing because they capture 
user input interests, and people tend to organize and store 
the sketches for later retrieval. Hence the demand for 
finding similar sketches from large databases, or so called 
content-based sketch retrieval (CBSR), is shared not only 
by researchers and engineers, but also by ordinary users. 
 Considering the intrinsic structural characteristic of 
sketches, researchers tend to facilitate CBSR by shape 
information [2][3][4] as layout, hierarchy, topology, etc. 
However, similar to other information retrieval problems, 
despite exploring the best content representation and 
matching schemes, only a limited number of relevant 
items can be retrieved with the initial query. The two 
major reasons that bring on this problem are the semantic 
gap between computer and human beings and the 
dynamic understanding of user perception. So it is almost 
impossible to find a similarity matching approach that 
satisfies all user variations, and the ability of on-line 
associating users’ understanding to computer features is 
required to bridge the semantic gap in retrieval process. 
 Relevance feedback is the most powerful way to 
reduce semantic gap and extend pure shape based 

similarity to more perceptually relevant similarity by 
introducing human judgments. The concept of relevance 
feedback was first carried out in text retrieval [5], and it 
has been shown to provide dramatic performance boost in 
CBIR systems. The main idea is to ask user to label each 
result as relevant (positive) or not (negative). This 
information are then collected and fed back to the system 
to refine the searching strategies online and get better 
results. Relevance feedback approaches develop from 
early heuristic weight adjustment to recently optimal 
learning methods [6], which formulate relevance feedback 
as a classification or density estimation problem. Many 
popular machine learning techniques were employed 
[7][8], among which the SVM-based techniques are the 
most attractive ones because of their good generalization 
ability [9]. Besides of binary SVM[10], one-class SVM 
(1SVM) [11] and biased SVM (BSVM) [12] are also 
proposed to deal with the imbalance between positive and 
negative examples. 
 However, there are three challenges associated with 
the specific relevance feedback scenario: First, small 
sample case. The number of labeled samples users can 
provide in each feedback loop is small. And the 
classifiers’ performance may not be stable or meaningful 
when facing insufficient training samples; Second, 
imbalance in training datasets. The number of negative 
examples is significantly larger than the positive ones, so 
binary classification is not suited here; Finally, real-time 
requirement. The relevance feedback algorithm needs to 
perform sufficiently fast for online real time interaction. 
In this paper, we propose a new relevance feedback 
algorithm called active BSVM learning to attack the 
above relevance feedback difficulties. Active learning 
strategy and biased classification technique are combined 
together to effectively capture user’s query interests and 
refine the searching strategy to further improve the 
retrieval accuracy. The algorithm is applied to CBSR to 
show its effectiveness. However, given that the features 
are represented in the form of vectors, this approach can 
be well extended to other information retrieval 
applications, such as trademark image retrieval, and so 
on. 
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2. BSVM Classification 
 
Relevance feedback is considered as an online biased 
learning or classification problem in this paper [12], since 
the system needs to treat positive and negative data 
differently. In a biased classification, users are biased 
towards one certain class while neglect the others, which 
is exactly the situation we meet in typical relevance 
feedbacks.  
 We incorporate BSVM classifier to model the biased 
classification process in CBSR. The main idea of BSVM 
[12] is to find an optimal hypersphere which can include 
most of the positive instances while exclude most of the 
negative data with the help of user’s labeled information. 
By modeling through a pair of concentric hyperspheres 
and allocating larger importance or weight to the positive 
instances than the negative ones, BSVM is more suitable 
for distinguishing the user’s target items from other non-
relevant ones. Given the training data set of (x1, y1),…, 

, where  is the 

number of training samples, 
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∈  is the dimension of 
feature space, xi is a feature vector and yi is its class label 
of the training sample. The decision function can be 
defined as [12]: 
 

 (1) 

 

]),(

),(2),(sgn[

)||)(||sgn()(

1 1

2

1

22

∑∑

∑

= =

=

−+

+−=

−Φ−=

n

i

n

j
jijiji

n

i
iii

kyyR

kyk

Rf

xx

xxxx

cxx

αα

α

 Here Φ (xi) is the mapping function, c and R are the 
center and radius of the optimal hypersphere, and k 
corresponds to Mercer kernel x. We use the concise form 
of the decision function to represent the sketch relevance 
in this paper by eliminating the constant values as: 
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 Consequently, sketches in the database are all ranked 
based on their relevance obtained from this evaluation 
function.  
 
 
3. Active Learning 
 
As we mentioned before, the small sample case is a main 
difficulty in achieving stable and meaningful results for 
relevance feedback. In this paper, we incorporate the idea 
of active learning to improve the learning performance 
and generalization ability of classifiers under a limited 
number of labeled samples. 
 Active learning refers to the strategies for the learner, 
e.g. the machine, to actively select the presentation 
samples to query the user for labels. The goal of active 

learning is to achieve the maximal information gain, or 
the minimized uncertainty in decision making [9]. 
Therefore it is desirable and necessary for the machine 
itself to select the optimal training samples. Assume the 
dataset D is made up of the labeled sample set L and 
unlabeled sample set U, then active learning l has two 
components (C, S), in which C: L→{-1, +1} is the 
classifier trained on the labeled dataset L; S is the 
selecting strategy which decides the next query subset u 
in U, given the current labeled set L. The main difference 
between active learning and traditional passive learning 
lies in the selecting strategies of how to choose the query 
samples from the unlabeled dataset. In a passive machine 
learning process, the learner typically serves as a passive 
recipient of the input data. While active learning enables 
the learner to have its own ability to choose the query data 
and collect user’s response information. In this way, the 
learner could ask for what is best for refining the system. 
 More specifically, the special form of active learning 
we are interested in relevance feedback is selective 
sampling, which aims to reduce the number of training 
samples by selecting the “most informative” samples for 
query, thus decreases the training data requirements. 
Usually, uncertainty sampling [13] is taken to find out 
these “most informative” samples by choosing the least 
confident samples in classification to label. 
 
 
4. Active BSVM Learning Algorithms 
 
An active BSVM learning algorithm for relevance 
feedback is proposed to improve the retrieval accuracy of 
CBSR. The algorithm is carried out with BSVM selective 
sampling, which regards the samples with the highest 
uncertainty in BSVM classification as the “most 
informative” ones, and presents them to users to label.  
 
4.1 BSVM Selective Sampling 
 
The “most informative” samples should be the ones 
whose labels the learner is most uncertain about. 
Intuitively, these “most informative” samples lie close to 
the decision boundary. This is because the samples on or 
near to the decision boundary are the modes that are the 
hardest to classify, and their classification results are least 
reliable. In order to improve the accuracy of decision 
making, it is desirable to reduce this uncertainty area that 
situates near the decision boundary by maximally 
narrowing the boundary margins. Therefore, we select the 
samples with minimal distances to the BSVM decision 
hypersphere as the “most informative” ones, and query 
the user for labeling. The information each sample 
provides can be computed on the basis of the distance 
value d(x) accordingly as: 
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where threshold is introduced from our experiments to 
normalize the sample information value. This calculation 
is simple and effective, making all information values fall 
into the range of [0, 1] while not violating their sequences 
in the feature space. The samples with the highest 
information values will be selected and presented to user 
to label. 
 
4.2 Active BSVM Learning Framework for CBSR 
 
We introduce active BSVM learning algorithm into 
CBSR system. The framework of active BSVM learning 
is described as follows: (1) Given a query: A set of ranked 
sketches are returned to user in sequence of their 
similarities to the query. (2) For each round of relevance 
feedback: If this is the first round, ask the user to label the 
top-k sketches; otherwise, a set of “most informative” 
sketches is recommended to user to label by BSVM 
selective sampling. Then the system learns the BSVM 
classifier with the current labeled data, and returns the k 
most positive sketches as the refined retrieval results. 
 The active BSVM learning algorithm can be divided 
into two stages. In order to find out the relevant sketches 
as much as possible, the top positive sketches are returned 
to users as the refined results in the first stage. In this 
way, users always get the best results in each loop, which 
implies the effectiveness of the algorithm. The second 
stage actively selects the most valuable query samples to 
decrease the requirements of the training data, thus 
maximally reduce user’s burden in labeling process. This 
is the efficiency of the algorithm. Meanwhile, we employ 
incremental learning in BSVM training, and it is fast to 
calculate the sample information after the decision 
boundary is solved, which makes active BSVM learning 
suitable for on-line feedback interactions. Moreover, the 
active BSVM learning algorithm is independent on the 
specific features. As long as the features can be 
represented in the form of feature vectors, the algorithm 
can be employed to model the feedback problem 
effectively. Therefore, active BSVM learning is well 
extended to other figurative retrieval environments. 
 
 
5. Experiments and Evaluation 
 
Our proposed active BSVM learning algorithm is 
evaluated with CBSR under the environment of Pentium 4 
2.0G CPU, 512MB memory, using a sketchy symbol 
database collected from 55 classes of engineering and 
electric symbols shown in figure 1. Ten persons are asked 
to draw 20 sketches for each class respectively, obtaining 
total 1100 sketches in the database. Spatial relations are 
employed as the features to represent the sketchy content 

information, which has been shown the availability of 
similarity matching for CBSR in our previous work [4].  
 

 

 
Figure 1. Illustration of 55 classes of sketches 

 
 Experiments are designed concerning the small 
sample case, training data imbalance, and real-time 
requirements. Each of 3 other users draws 55 query 
sketches of different classes to retrieve other sketches 
within the same class, which will be considered as 
positive results. Other returned candidates are then 
regarded as negative. Recall and precision values are 
averaged over all the classes and users. Relevance 
feedback results are recorded after 3 iterations since most 
users are not willing to label a large dataset and take too 
many feedback loops in a retrieval task. 
 
5.1 Biased Vs. Regular 
 
When confronting the imbalance dataset problem in 
relevance feedback, the biased classification ability of 
active BSVM learning is compared with other two regular 
SVM-based feedback algorithms of binary SVM and 
1SVM. All these feedback algorithms are performed with 
the same feature extraction methods. In our experiments, 
LIBSVM library [14] is introduced to develop the SVM-
based algorithms. The same kernel (Radial Basis 
Function, RBF) and parameters (v=0.2) are chosen for all 
the SVM settings to enable an objective measure of 
performance without bias. 
 

 
Figure 2. RP Graph of CBSR with relevance feedbacks 
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 Figure 2 shows the RP graph of the SVM-based 
relevance feedback algorithms in CBSR. Compared with 
original similarity matching result, the retrieval 
performance is obviously improved by relevance 
feedback to a large extent. Among these algorithms, the 
curve of active BSVM learning is the highest, which 
indicates it outperforms the other two SVM-based 
relevance feedbacks by maximally boosting the retrieval 
accuracy. This is to say, the active BSVM learning 
algorithm with biased classification ability can retrieve 
the sketches more accurately than regular classical 
approaches. 

 

 
Figure 3. Relevance feedbacks with asymmetric dataset 

 
 More specifically, we randomly construct an 
imbalance database with n+1 classes (n = 1, 3, 5, 10, and 
15) of sketches, which includes 1 positive class and n 
negative classes. As shown in figure 3, the imbalance 
problem becomes more serious with more negative 
classes, which results in a drop of the retrieval precision. 
Binary SVM method is not effective enough without 
considering the bias of positive data. While 1SVM 
feedback does not make use of the negative data, which 
cannot further improve the retrieval accuracy after the 
enclosed positive region is estimated. However, the curve 
of active BSVM learning algorithm drops little and almost 
reaches a horizontal status. This means active BSVM 
learning is least influenced by the asymmetric dataset and 
thus can handle the biased classification problem very 
well. 
 
5.2 Active Vs. Passive 
 
In order to validate the effectiveness of active BSVM 
learning in alleviating the small sample limitation for 
relevance feedback, we compare it with traditional BSVM 
passive learning. 

 
Figure 4. Performance of active and passive learning 

 
 Figure 4 depicts the AP curves of active and passive 
BSVM learning respectively. With the same number (20 
samples) of returned samples, active learning algorithm 
can provide a larger performance boost than the passive 
one. While with different number of returned samples, by 
returning 20 samples in active BSVM learning, the 
retrieval performance can match the passive learning 
method with 40 returned samples. This is to say, the 
active BSVM learning algorithm can achieve high 
performance under the small sample case. And the 
number of labeling samples needed to refine the classifier 
is much less (almost a half) than that of traditional passive 
learning method, which reduces the burden of labeling in 
relevance feedback effectively. 

 

 
Figure 5. Performance with increasing labeled samples 

 
 The relationship between the average precision and 
the number of labeled samples is given in figure 5. We 
can notice that both algorithms lead to better results with 
the increasing of the labeled samples. While active 
BSVM learning algorithm can provide better performance 
with the same amount of labeled samples. Therefore, the 
small sample limitation of relevance feedback can be 
effectively attacked by active BSVM learning algorithm. 
 
5.3 Real-time Requirement 
 
Moreover, the time cost used in the retrieval process is 
also a much-concerned factor for evaluating the relevance 
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feedback performance. Especially, in our real-time 
interactive CBSR environment, the time cost should be as 
small as possible. In our experiments, the average 
response time is about 87.2 milliseconds for content 
matching and 142.7 milliseconds for feedback. Generally, 
the time cost is much less than a second, which is 
sufficiently fast for real-time interaction. 
 
 
6. Conclusion 
 
Similar to other information retrieval domains, benefits of 
advances in CBSR cannot be expected without 
introducing relevance feedback. In this paper, relevance 
feedback is considered as a small sample biased 
classification problem, and we propose active BSVM 
learning to effectively solve the relevance feedback 
difficulties. We employ a BSVM classifier to describe the 
data distribution for biased classification. Meanwhile, 
active learning is incorporated to select the “most 
informative” samples to label, thus improve the 
generalization ability of the classifier maximally and 
reduce user’s burden of labeling. We also perform an 
incremental BSVM learning to reduce the processing 
time, which is fast enough for online interaction. 
Moreover, the active BSVM learning algorithm is 
independent on the feature extraction, given the features 
can be represented in the form of vectors in a feature 
space. Therefore it can be well extended to other domains 
of information retrieval as trademark image retrieval, and 
so on. 
 However, how to establish the accurate mapping 
between user and computer is still a difficulty for retrieval 
systems. In the future, we wish to further reduce the 
semantic gap. For example, the historical retrieval 
information can be organized effectively to carry out 
long-term feedbacks. 
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ABSTRACT 
In this paper we focus on identifying image structures at 
different levels in figurative (trademark) images to allow 
higher level similarity between images to be inferred. To 
identify image structures at different levels, it is desirable 
to be able to achieve multiple views of an image at 
different scales and then extract perceptually-relevant 
shapes from the different views. The three aims of this 
work are: to generate multiple views of each image in a 
principled manner, to identify structures and shapes at 
different levels within images and to emulate the Gestalt 
principles to guide shape finding. The proposed integrated 
approach is able to meet all three aims.  
 
KEY WORDS 
Image segmentation and representation, perceptual shape 
finding. 
 
 
1. Introduction 
 
Computerised image retrieval takes a query image and 
attempts to find all matching images: images which might 
be deemed similar to the query image by a human analyst. 
Most experts agree that shape similarity is the most 
important determining factor for figurative (trademark) 
image similarity in humans [1]. In this paper, we focus on 
the task of using computerised methods to find shapes in 
trademark images to allow image similarity matching and 
retrieval that emulates human matching. However, human 
image similarity is not just determined by the similarity of 
simple image shapes but also encompasses higher-level 
patterns (structures) made by the individual shapes 
following the Gestalt principles such as similarity, 
proximity or continuity [2].  Thus, we introduce an 
approach for finding patterns (structures and shapes) in 
trademark images, at different perceptual levels emulating 
the Gestalt principles. The Gestalt principles refer to the 
shape-forming capability of human vision. In particular, 
they refer to the visual recognition of structures and 
whole shapes rather than just ‘seeing’ a simple collection 
of lines and curves. Hence a computerised image retrieval 
system must be able to identify and match the most salient 
aspects of an image's appearance including: the image’s 
overall shape, the shapes of important image components 
or shapes defined by perceptually significant groupings of 
components.  

 
Finding perceptual structures and shapes requires 
generating image representations (views) at different 
levels. This is a difficult task that requires a "semantic" 
level of understanding and a number of different 
processing methods as no one technique is ubiquitous. By 
integrating a series of techniques, we aim to overcome the 
limitations of each individual technique while exploiting 
their strengths. In IBM's QBIC system [3] each image in 
the database has multiple representations achieved 
through the use of different feature spaces of an image 
rather than by generating new views at different scales. 
French et al. [4] introduce an image retrieval system that 
employs multiple image representations and then 
consolidates the results of matching the different 
representations to produce a ranked list of results. We 
take our cue from French et al. [4] and generate multiple 
views of the image. We use scale space selection [5] and 
Gaussian pyramids [6] to blur the image followed by 
pixel clustering to extract the image structures at different 
levels. After clustering, we identify the shapes and 
structures within the image views using edge 
segmentation and linking that obeys the Gestalt principles 
of continuity and proximity. We thus have a set of image 
views for each image and each view has a set of shapes. 
These sets represent the shapes present in the image at 
different perceptual levels. 
 
2. View generation and shape identification 
 
Sections 2.1-2.4 describe how we merge lower level 
shapes and texture within the image to extract structures 
and produce perceptual views of the image. Section 2.5 
describes a shape identification algorithm to determine 
the shapes present in these views and to identify other 
perceptual structures missed by the view generation step. 
 
2.1 Scale Space representation 
 
The first step for generating multiple perceptual views is 
image scaling. Scaling an image by different amounts 
allows us to identify different levels of structure within 
the image by blurring (merging) lower level structures 
and thus revealing the higher level structures, for example 
removing texture and grouping shapes. Here we develop 
the scale-space method of Lindeberg [5] which 
automatically selects the optimum scaling factor.  
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The scale-space representation for a 512x512 pixel 2-D 
image ( 2

ℜ∈ Ixy ) of continuous ℜ→ℜ2:f  where f (x, 

y) is the pixel intensity at (x, y) is ℜ→ℜ×ℜ +
2:L which 

is given by the solution of the diffusion eqs 1 and 2.  
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operation. The scale parameter +ℜ∈t  corresponds to the 
square of the standard deviation of the kernel t=�2. We are 
interested in the significant structures’ edges in the image 
so we choose the normalised Laplacian which is a 
“general purpose” edge-detector. We look for maxima 
(with respect to t) of ),(2 tLt xx∇ , where L is the scale-space 
representation of f, and f is the pixel intensity pattern of 
our image.  In terms of the more usual spread of a 
Gaussian, we look for maxima (with respect to �2) 
of ),( 222 σσ xLx∇ .  
 
To look for these maxima, Lindeberg either: selects a 
fixed point (e.g., the image centre), or follows the spatial 
maxima through the image as they move with increasing 
t. To avoid the heavy processing required by the second 
approach while also reducing the possibility of missing 
scales by using the first approach, we choose several fixed 
points in the image. Therefore, the values iij Jj ,...,1,2

=σ  
are our candidate scales taken from 25 equally spread 
sample points xi. We also limit the permissible scales {�} 
to between 2 and 24. Allowing higher values causes the 
image to be too blurred to be useful for image structure 
segmentation purposes.  
 
We now have a set of candidate scales {�} for the 25 
sample points. We take the histogram of {�} to identify 
the optimal scale to use to process the image and smooth 
this histogram with a 3-value kernel {1, 2, 1} to remove 
perturbations. The {1, 2, 1} kernel assigns a higher 
weighting to the central (chosen) value and a lower 
weighting to its two direct neighbours thus allowing us to 
select our optimum scale. The � corresponding to the first 
highest peak in the histogram is taken as our final scale.  
 
2.2 Gaussian Pyramids 
 
In this stage the aim is to determine informative image 
scales to identify structures in images. Scale-space 
selection identifies informative scales but can be 
inconsistent due to the chance placement of the 25 sample 
points leading to under or over generalisation of the 
regions surrounding each sample point. Conversely, the 
Gaussian Pyramid is consistent across images but uses 

fixed scale values meaning it cannot adapt to different 
scales and may miss structures. Therefore, we introduce 
the pyramid as a pre-processor to provide consistency by 
pre-smoothing images to increase their similarity prior to 
scale selection.  

 
Fig. 1. The multiple levels of the Gaussian pyramid where the 
 filtered image levels effectively form an inverted pyramid structure. 
 
The pyramid takes an image G0(x, y) and convolves the 
image with a Gaussian kernel (low-pass filter) to produce 
image G1(x, y). The derived image G1(x, y) is then 
convolved with the kernel to produce G2(x, y) which is 
then processed to produce G3(x, y). For our pyramid 
implementation, we use 4 levels G0, G1, G2, G3 with 
dimensions 512x512, 256x256, 128x128, 64x64 pixels 
respectively as shown in Fig. 1. 
 
If 2

ℜ∈ Ixy  is the original 512x512 pixel 2-D image then 
the pyramid is computed as eqs 3 and 4: 
 
G0(x, y) = I(x, y)     (3) 
Gi+1(x, y) = FILTER(Gi(x, y)) + RESIZE(Gi(x, y)) (4)  
 
For the FILTER function, we use the standard Gaussian 
function in eq 5: 
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where we set �2 = 3.   
 
Filtering is followed by RESIZE which resizes Gi by scale 
factor 0.5 to give Gi+1 using separable spline interpolation 
algorithm described in [7]. We found that resizing without 
interpolation over-emphasises jagged lines in images by 
increasing the aliasing. 
 
The next processing step is to divide each blurred variant 
of the image into regions (structures). We use pixel 
intensity categorisation to identify the structures. 
 
2.3 Categorisation 
 
To categorise (cluster) the pixels, we take our cue from 
Lu and Chung [8] who proposed a hill-clustering method 
for determining the number of texture clusters. So, for 
each pyramid level Gi(x, y), the scale (�) is selected and 
the image is blurred with a Gaussian kernel of size � 
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giving Bi(x, y). From Bi(x, y), we generate a histogram of 
pixel greyscale intensity values (divided into 255 bins). 
This raw histogram needs smoothing using a one-
dimensional Gaussian with standard deviation 10 bins (1 
pixel width) before it is usable.   We then choose the N 
highest peaks (N categories) of the smoothed histogram 
and set thresholds midway between neighbouring peaks 
which should reflect the larger-scale structures in the 
image as shown in Fig. 2.  

 
Fig. 2. (a) is the source image. (b) is this image’s pixel intensity 
histogram with the pixel intensity threshold drawn for k=2 
categories - the trough in the histogram identifies the threshold 
       (category boundary). (c) shows the result of categorisation. 
Previous pixel categorisation work [9] tends to rely upon 
a pre-specified maximum number of categories Mmax. The 
optimum number of categories is then determined by 
segmenting the image into k categories for 2 � k � Mmax 
and using some suitable criterion to select the optimum 
[9] which is laborious. We employ a simple heuristic 
which we developed following detailed analysis of the 
pixel intensity peaks of 450 trademark images used in 
[10]: sort the peaks into peak intensity order and if the 
peak value is less than 100 then do not include the peak. 
This resets Mmax to the k peaks with values greater than 
100. This value (100) was derived through a series of 
analyses. It is a trade-off: too high a value causes some 
images to have too few or even 0 categorisations. Too low 
a value causes too many categorisations for some images. 
We then identify the 2 highest peaks, 3 highest peaks up 
to Mmax highest peaks and divide the image into a series of 
views (image representations) with 2, 3 … Mmax categories 
per view. The result is a series of categorised views where 
pixels of similar intensity are grouped to reveal the 
structures within the image. 
 
2.4 View Generation 
 
It is desirable to differentiate line/region images from 
noisy/textured images and treat the two types differently. 
Line and region images require merging of lower level 
image structures (shapes) to infer the higher level 
structures. Textured and noisy images require the texture 
or noise to be effectively blurred out to produce a 
homogeneous region to represent the structure (shapes 
and regions) in the image. We specify Mmax as 2 for line 
and region–based images that are bicolour (black and 
white) and Mmax as 4 for texture/noisy or grey-scale 
images.  Note Mmax may be reset if there are fewer than 4 
peaks over 100. We have erred on the side of caution by 

allowing 4 categories to ensure all views are found while 
potentially some unwanted views may be generated.  
 
For this operation we use the Laplacian pyramid L0, 
operator, which represents the difference of Gaussians 
(G0-G1) [6]. This is essentially an edge detection of G0 
and is given in eq 6: 
 
L0(x, y) = G0(x, y) – RESIZE(G1(x, y))   (6) 
 
We can exploit the energy of L0 to differentiate the types 
as textured/noisy images will have a higher energy (more 
edges) compared to line/region images. Following visual 
analyses of the energy levels of: the decompositions seen 
by humans in 84 trademark images in a set of experiments 
[11], the decompositions seen by humans in 63 trademark 
images in a set of experiments [12] and a further set of 
450 images comprising clean, noisy and textured images 
[10], we use the following processing steps for the two 
types of images: 
 
First, calculate the energy of L0 as in eq. 7. 

Energy = �
∀ yx

yx,p
,

2)(       (7) 

where p(x, y) is the greyscale value of pixel (x, y) in L0. 
 
Then apply the following decision rules: 
If energy < 9600 then process the image as a region-
based/line-based. 
If energy � 9600 then process the image as a 
textured/noisy image. 
 
We then process these selections as follows: 
 
2.4.1  For region/line-based images 
• G0 – unprocessed. 
• G2 – straight categorisation of  G2 image  – no scale 

selection. 
• G3 – select scale (kernel width), convolve Gaussian 

(�) with G3 image, categorise resulting 
convolved image. 

 
2.4.2  For texture/noisy images  
There is a tendency for �0==�2 in textured/noisy images 
where �0 is the scale selected for G0 and �2 is the scale 
selected for G2. During our analyses, we found that G0 
and G2 were the best levels of the Gaussian pyramid to 
process for textured images. However, if   �0==�2 this 
would produce virtually identical outputs when G0 and G2 
were convolved with equivalent kernels and is not 
desirable. Accordingly, we test for equivalence and alter 
our processing strategy accordingly. 
• If (�0 <> �2) then  

o G0 – select scale (kernel width), convolve 
Gaussian (�0) with G0 image, categorise resulting 
convolved image. 
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o G2 – select scale (kernel width), convolve 
Gaussian (�2) with G2 image, categorise resulting 
convolved image. 

 
• If (�0 == �2) then  

o G0 – select scale (kernel width), convolve 
Gaussian (�0) with G0 image, categorise resulting 
convolved image. 

o G3 – straight categorisation of G3  – no scale 
selection. 

 
2.5 Shape Identification 
 
In sections 2.1-2.4, we have produced various views of an 
image with the aim of merging lower level shapes and 
texture to pinpoint perceptual structures. Next we identify 
shapes in this data. Our image structure-finding approach 
uses a closed shape identification algorithm.  The method 
adapts and refines Saund’s closed shape identification 
algorithm [13]. By doing this, the approach can find 
higher level (perceptual) shapes. 
 
Initially, the closed shape algorithm requires an 
underlying technique to identify the edge segments within 
an image and to detect the relationships between those 
edge segments. We resize the multiple views generated to 
2048x2048 pixels from 512x512 to ensure edge 
separation as all structures will be at least 4 pixels wide 
and the structure’s edges will not be adjacent. If the edges 
are in adjacent pixels then tracing the shapes is difficult as 
it is not clear which edge a pixel belongs to. We resize 
with no interpolation to prevent blurring of the edges in 
the view as blurred edges will confuse the edge detector. 
We find the edges in the image using a simple Laplacian 
edge detector before subdividing these edges into constant 
curvature segments (CCSs) using the Wuescher & Boyer 
[14] curve segmentation algorithm. This aggregates edge 
primitives into more perceptually-oriented CCSs. We 
have refined and improved the technique by increasing 
the tidying of the edges prior to edge segmentation to 
ensure there are no gaps or errors in the edges and 
tailoring the parameter settings to trademark images to 
improve the quality of the CCSs produced.  
 
These CCSs thus provide the building blocks for our 
closed shape identifier as in fig 3. Our aim is to group 
these CCSs using Gestalt-like methods to produce a graph 
of CCS relations which will underpin the Saund closed 
shape identification algorithm.  Each CCS becomes a 
node in the graph with two ends (first point - denoted as 
an x, y coordinate and last point - also denoted as an x, y 
coordinate). We find all segments that are end-point 
proximal. We extract endpoint proximity by comparing 
CCSs.  We have evaluated various distances (in pixels) to 
use for end-point proximity calculations and found the 
following performed optimally with respect to finding 
perceptual shapes and structures. 
 

 
Fig. 3. A set of CCSs (0-6). The arrow heads denote the first end of 
the line segment and the opposite end of the line segment is hence 
                                                the last end.  
 
If dist(CCS1,CCS2) < 32 pixels then CCS1 and CCS2 are 
end-point proximal. If dist(CCS1,CCS2) < 256 and the 
difference between the gradients of the lines (or the 
terminal gradients of curves) is within ±5° then CCS1 and 
CCS2 are end-point proximal (and continuous). This 
effectively joins the graph by linking the proximal end-
points and mimics human perception by allowing a wider 
gap between continuous pairs than non-continuous pairs 
of CCSs. Note that we differentiate CCS ends (first, last) 
and only allow one end-point proximity between CCS1_last 
and CCS2 to prevent cycles. We always use the closest so 
if dist(CCS1_last, CCS2_first)=10 and dist(CCS1_last, 
CCS2_last)=11 then the proximity is CCS1_last�CCS2_first 
even though dist (CCS1_last, CCS2_last) < 32.  
 
Our closed shape algorithm overlays this graph. The 
search commences from each end (first and last) of each 
node (CCS). For each end (first then last) in turn, all 
possible paths are followed. This effectively forms a 
search tree with paths through the tree representing the 
possible shapes present in the image, see fig 4.  
 

 
Fig. 4. The search tree for the set of CCSs in Fig. 3. The left tree 
shows the tree after expanding each end of node 0 (root). The middle 
tree shows how, when the tree is expanded by node 2, a closed path 
is found - 0126. When 2 is expanded, although 6 is end-point 
proximal it is not added as it is already present on the opposite side 
of the tree. The right tree shows the tree expanded by node 4 and 
                    node 3. A second closed path is identified - 012345. 
 
The search is managed through the use of scores for 
ranking possible paths through junctions such as t-
junction or crossroads, see table 1. We have revised the 
junction scores used by Saund to improve the quality of 
the results for figurative images and to make the 
algorithm more consistent.  We used the results from our 
previous work involving human experiments [11] to 
derive our new junction scores. During path search and 
scoring, we separate straight paths from turning paths 
using the table of scores depending on whether the path 
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is: turning clockwise (CW) or anticlockwise (ACW); OR 
straight clockwise or anticlockwise. Each path 
accumulates a score using the score from each junction it 
passes through. Our path scores are an average of the 
junction scores. Saund’s uses a cumulative (product) 
calculation but this favours short paths whereas we allow 
longer paths to be explored. We have a minimum score 
threshold (0.6 for straight paths and 0.8 for turning paths), 
compared to 0.6 and 0.9 respectively for Saund. As soon 
as the average score for a path falls below the minimum 
score, we terminate the search on that path. These 
minimum scores were derived from a series of analyses 
using the images from [10]. 
 

Junction Turning 
ACW 

Turning 
CW 

Straight 
ACW 

Straight 
CW 

dist(CCS1,CCS2)  
< 2 pixels 

1.0 1.0 1.0 1.0 

 
1.0 0.7 1.0 0.7 

 
0.7 1.0 0.7 1.0 

 

1.0 0.5 0.9 0.5 

 

1.0 1.0 1.0 1.0 

 

1.0 1.0 1.0 1.0 

 

0.5 1.0 0.5 0.9 

 

1.0 0.5 0.9 0.5 

 

0.5 1.0 0.5 0.9 

 

1.0 0.5 0.6 0.5 

 

1.0 1.0 1.0 1.0 

 

0.5 1.0 0.5 0.6 

 
1.0 1.0 1.0 1.0 

Table 1. A table of the shape finding junction scores.  Each row 
represents a junction configuration such as t-junction or crossroads. 
The arrow indicates the path direction through the junction.  The 
                          bold scores differ from Saund’s scores. 
 
As each leaf node in the tree is expanded, new child nodes 
are compared with child nodes in the opposite side of the 
tree. If they are end-point proximal then a closed path (a 
cycle) has been identified and its nodes and boundary 
pixels are added to the list of candidate paths. To produce 
the set of shapes for each image in this paper, we accept 
all candidate paths; only repetitions are removed.  We 
have produced a perceptual relevance classifier that can 
rank or classify shapes as perceptually relevant or 
irrelevant [15] and discard perceptually irrelevant shapes. 
 

3. Results 
 
We present some results of our methods. Fig 5 shows that 
higher-level structure (a ring shape) is extracted using 
blurring and categorisation. In fig 6, we show the result of 
blurring and categorising a textured and noisy image to 
demonstrate that the texture is clustered and the higher-
level structure of the image is revealed. Finally, in fig 7, 
we show that perceptual shapes are found using our 
methods.  We thus prove that by using our processing 
pathway to blur, categorise, edge segment and identify the 
shapes, perceptually relevant shapes may be extracted. 
 

 
Fig. 5. Three images (a, b and c) and their respective outputs. All 
  images were classified as line/region by the energy-based classifier.  
 
In fig 5, the views produced from each image are similar 
when compared visually by a human observer on a 
column basis. The ring–structure has been found. If the 
three images in fig. 5, column 3 were matched the ring 
structures would be similar.  If the three original images 
in column 1 were matched they would not be similar.   
 

 
Fig. 6. The original image (a) is processed to produce a series of 
 image views (b, c and d). The edges found are shown in e, f, g, and h  
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Our results are not perfect. For example, in fig 6, results b 
and c are good. View (d) is probably superfluous here but 
the energy level and pixel intensity minimum have to be 
set globally so this may result in an occasional 
superfluous output for some images. The edges shown in 
f, g and h demonstrate that we have found the image 
structures to allow image matching. Although there is a 
tiny amount of noise remaining, it comprises very small 
blobs which could easily be removed using a suitable 
image processing technique. In contrast, image (e) shows 
the (1000+) edges detected in the original image and no 
discernible structures.  
 

 
Fig. 7. The six perceptual shapes found by the shape identifier from 
                the trademark image view in the top row. 
 
In fig 7, the shape identifier has found the set of 
perceptual shapes we may expect a human to identify [11] 
in the trademark image view.  This set of shapes may be 
used for perceptual image matching and retrieval.   
 
4. Conclusion 
 
We have developed and demonstrated a figurative image 
processing pathway comprising a suite of methods to find 
perceptual shapes (structures) within images. Each image 
will produce a number of views and each view will 
produce a number of perceptual shapes.  The set of shapes 
found for each view may be matched and thus used for 
image matching and retrieval. 
  
No single shape finding method works for all images so, 
by systematically combining different methods and using 
image information to guide the processing we have 
identified perceptual structures. The method follows the 
Gestalt principles (such as proximity, continuity and 
similarity) and has been designed using results from 
human image analysis experiments. 
 
The method has been developed within the EU PROFI 
project to extract the perceptual structures from trademark 
images to be stored in a trademark database for trademark 
image retrieval. 
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ABSTRACT
A new framework for the perceptually relevant compari-
son of figurative images, especially trademark logos is pre-
sented in this paper. Images are divided into salient ge-
ometric figures such as rectangles, ellipses, and triangles.
Parts not fitting into any of those simple classes are rep-
resented by their boundaries. The figures are classified, re-
lated, and weighted according to their perceptual relevance.
For the comparison of two images the figures and the re-
lations are compared independently from each other. For
the comparison of single figures a simple measure of sim-
ilarity based on registration techniques is applied, which
is noise tolerant and shows good results for figurative im-
ages that have no spatially independent parts. The simi-
larity of the images is then determined by the similarities
of the figures and the relations for the best match. The al-
gorithms were tested with a collection of 10 745 trademark
images from the UK PTO, with the same set of 24 reference
queries that were used to test the ARTISAN System. Each
query consists of a query image and a list of relevant im-
ages, compiled by experienced trademark examiners. The
experiments show that the presented approach allows for a
considerable improvement of content based image retrieval
in trademark images.

KEYWORDS
shape, content based image retrieval, trademark images

1. Introduction

For the comparison of figurative images that can be rep-
resented by a single closed (polygonal) curve, a variety of
methods were invented that show respectable performance.
Most trademarks on the other hand are way more complex
and therefore the comparison has to consider many more
aspects. Although one of the laws invented by Gestalt
Theory states that configurations cannot be analyzed into
parts and relations [1], for such multi-component images
the comparison based on the individual image components
is more effective than a comparison based on the whole im-
age [2].

With regard to the ground truth provided by professional
trademark examiners (see section 3), some observations
can be made which are formulated as follows:

• People look for figures in the image that can easily
be memorized. These figures may be abstract figures
such as squares, circles, and triangles or figures of ev-
eryday life such as letters, digits, and stylized eyes or
paperclips. If such figures exist within the image, their
concrete proportions and positions play a minor role
(see the appendix figs. 2 and 3).
This is supported by the facts that:

– a small number of common shape elements can
form a basis for humans to discriminate between
a wide variety of images [3] (cited in [4]).

– ”there is an unconscious effort to simplify what
is perceived into what the viewer can under-
stand”. [5] (cited in [6])

• If the image consists of spatially independent parts,
the size of the gaps inbetween plays a minor role (see
the appendix fig. 4).

• If an essential part of the image is surrounded by a
frame, the shape of the frame and even the existence
of the frame play aminor role (see the appendix fig. 4).
In [7] experiments on the way humans decompose fig-
urative images were made. 5 of the images had a
frame, for 3 of them all subjects completely ignored
the frame and for 1 image only the second least sig-
nificant decomposition (out of 9) contained the frame.

• Looking at a figurative image, the number of essential
parts that are perceived is typically very small. For
example in a regular pattern of little circles, one does
normally not discriminate between the different cir-
cles, but group them together to a ’pattern of circles’.
Moreover when comparing such patterns it plays only
a minor role if 16 circles form a 4×4 grid or if 25 cir-
cles form a 5× 5 grid.

Our Framework for improving the comparison of figurative
images is based on a very simple idea: try to characterize a
figurative image the same way humans would do. If there
is a circle in a triangle, characterize it as ‘a circle in a tri-
angle’, if there is something never seen before, character-
ize it as ‘something never seen before’ and describe it by
what is known about it — in our case its boundaries. Many
patent offices use such a characterization based on the so
called Vienna classification [8]. The codes for the exam-
ples given in fig. 1 would possibly be ‘26.3.10 Triangles
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Figure 1. actual trademark images— some easy to describe
by geometric primitives and some not.

containing one or more circles, ellipses or polygons’ and
‘26.13.25 Other geometrical figures, indefinable designs’
respectively.

Following this idea in our approach, an image is divided
into a set of (not necessarily spatially independent) parts
— preferably simple and salient geometric figures. These
parts are classified, weighted, and related. The relation-
ships are weighted as well. Comparing two images is ac-
complished by searching for subsets of the parts and their
relations that match well.
The comparison of the parts is done independently, leaving
aside their relative sizes and positions. It can be done using
a similarity measure that works well for shapes whose parts
lie close together whereas the resulting measure can handle
arbitrary composed shapes.
In [9] a similar approach of dividing the images into geo-
metric primitives and finding a match between these prim-
itives is proposed. Its main drawbacks are 1.) that the
comparison of the primitives does not prescind from their
concrete positions and 2.) that the similarity between
primitives belonging to different categories is defined as
being zero, which is contrary to human perception e.g.
when comparing a circle and a regular 12-gon.

We do not assume that all parts of all images can
be replaced by high level primitives in a meaningful way.
Analysis of annotations of trademark images shows that a
considerable number of images needs different treatment
(see 2.1). In addition, whenever a measure of similarity de-
pends on the way the images are decomposed, there is the
risk of underestimating the similarity just because two im-
ages get decomposed in different ways (e.g. two triangles
forming a square vs. a square plus its diagonal).
For these reasons the comparison based on image primi-
tives is not used as a stand-alone measure of similarity, but
it is used in a framework to improve the results of the under-
lying, simple measure of similarity. Images are first com-
pared using the underlying similarity measure and only if
the decomposition leads to a higher value of similarity it is
used. In this way the advantages of using high level fea-
tures is combined with the robustness of the simple, low
level comparison.

2. Comparison based on Image Primitives

For the comparison based on image primitives an underly-
ing measure of similarity (e.g., the measure mentioned in

section 2.4) is used, that assigns every pair of images or
image parts their value of similarity s ∈ [0, 1].
It is assumed that figurative images are given as a set P

of polygonal boundary curves p1 . . . pm. Based on these
polygonal curves a set F of figures f1 . . . fn is extracted
and their relationsR = r1,2 . . . rn,n−1 are computed.
The process of figure detection is not described in detail
here, but the decomposition is assumed to be part of the in-
put. For the experiments in sec. 3 however, a simple proof-
of-concept implementation was used.

2.1 Figures

The figures can either be simple geometric objects (image
primitives) or more complex objects. The primitives con-
sidered in our implementation are:

• ellipses (as a generalization of circles)

• rectangles (as a generalization of squares)

• triangles

The choice of these three types of primitives is based
on their frequency of occurrence: In a collection of
1 762 395 trademark images for which we had access to the
frequencies of the vienna codes, more than 23% of the im-
ages contain rectangles (as a special case of quadrilaterals)
and 15% contain circles. These two topmost frequencies
are followed by ‘lines, bands’ (which leaves open how to
deal with geometrically), and by triangles.
Although these primitives occur very often, more than one
half of the images is not annotated with one of them at all.
Even with an increased set of primitive types, there will be
unclassifiable parts remaining for which even humans have
no proper category. The parts of the image that cannot be
represented by the three types of primitives are categorized
as

• convex polygons

• arbitrary sets of polylines

Analogously to concentric circles, ‘concentric’ ellipses,
rectangles, triangles, and convex polygons resp. are con-
flated to a single figure with multiple layers.

2.2 Relations

For a pair (fi, fj) ∈ F ×F, i �= j of figures the relation ri,j

consists of numerical values reflecting

• the size of fj relative to the size of fi (The size of a
figure is defined to be the perimeter of the bounding
box that maximizes the aspect ratio.)

• the relative distance of fj to fi (The distance of the
bounding boxes’ centers relative to the size of fi.)

• the qualitative relation, i.e., the similarity of fi and fj

under translations, rigid motions and under reflec-
tions.
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2.3 Comparison of two Images

For the comparison of two images I1 and I2 the rele-
vance wF of the figures and the relevance wR of the re-
lations is preset such that wF + wR = 1 — for images
consisting only of one type of figures, e.g., only squares,
the relations between these figures are of greater impor-
tance than for images consisting of totally different figures.
The figures and relations get weights w(fi) and w(ri,j)
according to their salience, such that for each image all
weights sum up to 1, namely:

∑
f∈F w(f) = wF and∑

r∈R w(r) = wR.

For every pair (f1
i , f2

k ) ∈ F 1×F 2 of figures a value of sim-
ilarity s(f1

i , f2
k ) ∈ [0, 1] is computed, using the underlying

measure of similarity. For every pair (r1
i,j , r

2
k,l) ∈ R1×R2

of relations a value of similarity s̃(r1
i,j , r

2
k,l) ∈ [0, 1] is

computed, using a simple measure of similarity.

LetM be the set of all one-to-one matchings between fig-
ures of image I1 and image I2. The value of similarity S of
the two images is then defined as the weighted sum of the
similarities of the matched figures, plus the weighted sum
of the similarities of the (implicitly) matched relations:

S(I1, I2) = max
M∈M

{ ∑
(f1

i
,f2

j
)∈M

s(f1
I , f2

J) ·
w(f1

i ) + w(f2
j )

2

+
∑

(f1

i ,f2

k)∈M

(f1

j
,f2

l
)∈M

s̃(r1
i,j , r

2
k,l) ·

w(r1
i,j) + w(r2

k,l)

2

}

The problem of determining whether S(I1, I2) ≥ θ for
a given threshold 0 < θ ≤ 1 is an extension of the
quadratic assignment problem (see e.g. [10]) and therefore
is NP-complete. Since the number of essential parts that
are perceived is typically very small, the admissible num-
ber of figures that represent an image can be bounded by a
small constant (see section 3). Thus, the value of similar-
ity S(I1, I2) may be computed using a branch and bound
algorithm for enumeration of the promising matches.

2.4 Proof of Concept Implementation

Several estimates in the implementation are arbitrarily fix-
ings. Since comprehensive psychological studies on e.g.
the relationship between the size and the perceived rele-
vance of figures or on the effect of repeated figures were
not available (or at least unknown to the author), the for-
mulas used stem from qualitative considerations but do not
necessarily comply with reality in their quantitative behav-
ior.

Weights Every figure fi gets an absolute weight wa(fi)
which equals the square root of the figure’s size (perime-
ter of the figure’s bounding box that maximizes the aspect
ratio). Every relation ri,j gets an absolute weight wa(ri,j)

based on the absolute weights of the figures fi and fj . The
weights w used in the comparison are derived from these
absolute weights by normalizing them such that

∑
w(f) =

wF and
∑

w(r) = wR. If two images I1 and I2 with dif-
ferent numbers n1, n2 of figures are compared, only the
relations for nmin = min(n1, n2) figures may be selected.
In this case the weights of the relations of the image con-
sisting of more figures are adjusted such that the maximum
sum of the weights of relations between a nmin-subset of
the figures equals wR.

Frames A frame is a — mostly rectangular — part of
an image that only surrounds the essential parts, but has
only very limited or no influence on the perception of the
image. For every figure the likeliness of being a frame is
rated based on the following propositions:

• frames are convex and symmetric

• frames contain at least one complex figure or two
primitive figures

• frames are not too small compared with surrounding
frames

• frames are not surrounded by something that is not a
frame

Based on this likeliness the weight of a frame figure is de-
creased by a factor ∈ [1.0, 2.0].

Repetitions If a logo contains groups of identical figures,
the concrete number of these identical figures plays only
a minor role in comparison (see the appendix fig. 3) and
some trademark images even contains miscellaneous vari-
ants of the actual logo (see the appendix fig. 2). Therefore
the weights of such copies are reduced.

Underlying Measures of Similarity For the underlying
measures of similarity between figures or relations respec-
tively, values between 0 and 1 are required so that the re-
sulting value will range from 0 to 1. In [11] such a nor-
malized measure of similarity is described which works re-
spectably well for figurative images whose parts lie close
together. The basic idea behind this approach is to find a
(similarity) transformation t : R

2 → R
2 that maps parts of

the one figure f1 into the proximity of corresponding parts
of the other figure f2 and the similarity is rated based on
proximity and parallelism of t(f1) and f2. For the com-
parison of image primitives (ellipses, rectangles, triangles)
the values of similarity may be predefined, for the compar-
ison of primitives with complex figures the values may be
precomputed so that only the values for the comparison of
complex figures have to be computed online.
The similarity of 2 relations r1

i,j and r2
k,l is computed by

a formula based on the difference in relative distances, the
difference in relative sizes, and the qualitative relations i.e.
the similarity s(ff , fj) under translations, rigid motions, or
reflections.
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3. Experimental Results

The retrieval performance was tested with the same set of
10 745 trademark images and the same 24 reference queries
that were used to test the ARTISAN System [12]. Each
query consists of a query image and a list of relevant images
from the test set (including the query image). The lists of
relevant images had been compiled by experienced trade-
mark examiners (examples of query images with some rel-
evant images can be found in AppendixA). Most of the im-
ages depict abstract geometrical figures — black shapes on
white background— but some of the figures are hatched or
have texture: the number of closed contours (distinguish-
able black and white areas) exceeds 1 000 for about 800 im-
ages (7 %) and the maximum observed is even 92 436.

From every image the set of polygonal boundary
curves was extracted and polygons belonging to noise and
texture were eliminated1. The remaining closed contours
for which every vertex corresponds to a pixel, were then
simplified using the Douglas-Peucker algorithm [13] (cited
in [14]).

The segmented images were automatically decom-
posed by detecting image primitives and grouping the re-
maining parts based on their proximity. For images with
more than one possible decompositions a value of simplic-
ity was computed for every decomposition (based on reg-
ularity of the figures, symmetries, and number of figures).
More than 90 % of the images were decomposed into at
most 6 figures, the maximum number of perceptually rel-
evant figures in an image that were identified by the seg-
mentation was 14.

For each of the 24 queries, all images were compared
to the query image and they were ranked according to the
resemblance values. LetN be the number of images, n the
number of relevant images for a query, ri the rank of the
i-th relevant image, and rl the maximum rank of a relevant
image for a query. The retrieval performance was rated
based on the following values as defined in [12]:

Normalized Recall Rn Value in the range from 0 (worst
case) to 1 (perfect retrieval).

Rn = 1−

∑n

i=1 ri −
∑n

i=1 i

n(N − n)

The recall gives a higher weight to success in retrieving the
first few items.
The average value for the 24 queries achieved by the com-
bined approach was 0.96 (0.90 early artisan, 0.94 late arti-
san). The average value achieved by the underlying mea-
sure of similarity alone was 0.93, so the framework yields
an improvement of 0.03.

1This noise reduction is important but it is not in the main focus of our
work. Therefore, a very simple implementation was used, that was not
able to process the entire collection of images. In 116 cases out of 10 745,
the texture in the image had to be removed by hand and the segmentation
was redone.

Normalized Precision Pn Value in the range from 0
(worst case) to 1 (perfect retrieval).

Pn = 1−

∑n

i=1 log(ri)−
∑n

i=1 log(i)

log
(

N !
(N−n)!·n!

)
The precision gives equal weight to all retrievals.
The average value for the 24 queries achieved by the com-
bined approach was 0.79 (0.63 early artisan, 0.70 late arti-
san). The average value achieved by the underlying mea-
sure of similarity alone was 0.71, so the framework yields
an improvement of 0.08.

Normalized Last-Place-Ranking Ln Value in the range
from 0 (worst case) to 1 (perfect retrieval).

Ln = 1−
rl − n

N − n

The last-place-ranking indicates the number of retrieved
items a user has to search in order to have reasonable ex-
pectation of finding all relevant items.
The average value for the 24 queries achieved by the com-
bined approach was 0.79 (0.56 early artisan, 0.72 late arti-
san). The average value achieved by the underlying mea-
sure of similarity alone was 0.68, so the framework yields
an improvement of 0.11.

Number of Retrieved Images n0.01 The number of rel-
evant images ranked within the top 1 percent of the entire
collection.
The sum for the 24 queries achieved by the combined ap-
proach was 229 (168 early artisan). The sum achieved by
the underlying measure of similarity alone was 191, so the
framework yields an improvement of 20 %.

For the detailed values of all 24 queries see the appendix
table 1.

4. Conclusion

A new framework for content based image retrieval (esp.
for trademark images) is presented which does not so much
bank on sophisticated computation, but on taking account
of some observations concerning perception: Familiar fig-
ures in the images are mostly perceived separately and their
relevance may differ considerably. According to these ob-
servations the computation of image similarity is proceeded
as follows: Images are divided up into sets of simple fig-
ures and the figures are weighted according to their rele-
vance. The comparison of images is based on comparing
the figures as well as their relations separately and on sum-
ming up the weighted similarities for the best matching of
figures. The results of the experiments encourage further
efforts in this direction, e.g., for improving the partitioning
of the images, extending the set of image primitives, and
refining the underlying measures of similarity for figures
and relations.
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Appedix A Examples of Trademark Images

Some examples of query images together with relevant im-
ages that can not be handled properly with a simple regis-
tration based approach.

Figure 2. Query image (left) and images to retrieve having
different proportions.

Figure 3. Query image (left) and images to retrieve having
different arrangements.

Figure 4. Query image (top left) and images to retrieve
having different gaps and different frames.
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Appendix B Experimental Results

query relevant Rn Pn Ln n0.01

images

1. 26 0.99 0.87 0.93 19

2. 16 0.99 0.87 0.89 13

3. 12 0.96 0.89 0.60 10

4. 10 0.92 0.81 0.34 7

5. 10 0.99 0.72 0.97 4

6. 18 0.94 0.80 0.36 12

7. 11 0.97 0.71 0.89 6

8. 20 0.98 0.86 0.73 16

9. 25 1.00 1.00 1.00 25

10. 11 0.92 0.54 0.76 5

11. 10 1.00 0.91 0.98 8

12. 4 1.00 0.99 1.00 4

13. 16 0.97 0.62 0.89 6

14. 6 0.94 0.70 0.74 4

15. 13 0.99 0.85 0.93 10

16. 13 1.00 0.97 0.99 13

17. 17 0.94 0.66 0.72 9

18. 12 0.97 0.60 0.87 6

19. 21 0.67 0.28 0.11 1

20. 8 0.97 0.79 0.85 6

21. 8 1.00 0.91 0.98 7

22. 10 0.99 0.74 0.91 8

23. 23 0.99 0.87 0.93 20

24. 13 0.97 0.86 0.67 10
mean / sum 333 0.96 0.79 0.79 229
standard deviation 0.07 0.16 0.23

Table 1. Results achieved: 24 query images plus values for normalized recall, normalized precision, normalized last place
                       ranking, and number of relevant images ranked within the top 1 percent of the entire collection
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ABSTRACT
To evaluate similarity between two images, the layout or
configuration of the shapes is an important feature besides
geometrical shape similarity. In particular, trademark im-
age retrieval is an application domain where layout sim-
ilarity is important, and in many cases overlooked. In
this paper, we present a graph-based encoding of layout,
in which both directional and topological layout informa-
tion is stored. A Hermitian matrix is associated to each
graph, and contains all the information that is present in the
graph. The spectra of these Hermitian matrices are used for
indexing purposes. By obeying several constraints on the
construction of the Hermitian matrices, we can mimic the
spectral behaviour of Laplacian matrices, which are proven
to be successful representations in retrieval environments.
Experiments show the improved representational power of
the proposed approach over spectral methods using Lapla-
cian matrices.

KEY WORDS
Indexing, image retrieval, trademarks, Laplacian, Hermi-
tian, spectra

1. Introduction

The key function of any indexing algorithm is to speed up
content-based retrieval of objects or models that are stored
in a database, by selecting a small set of candidate ob-
jects that are either presented to the user, or passed on to a
more refined matching unit in the retrieval pipeline. At this
matching level, more accurate and more expensive match-
ing algorithms can be deployed because of the reduced size
of the set of objects that is under inspection. At the in-
dexing level however, comparison of objects should be ef-
ficient and it must be possible to prune the database, i.e.
the database must be partitioned in such a way that simi-
lar models are positioned close to each other. Only then
objects that are far from the query object can be discarded
without further inspection.

Naturally, the representation of the objects in the in-
dex and the accuracy and efficiency with which non-similar
objects can be discarded are closely related. The objects
that are under investigation in this work are logo and trade-
mark images, or any kind of image in general where the
layout of the individual image components (as opposed to

their shape characteristics) is important for similarity eval-
uation [10]. In content-based trademark image retrieval,
layout can play a large role in identifying trademark in-
fringement. See for an example Figure 1, where the con-
figuration of the individual shapes is one of the most impor-
tant properties. Suppose that in all three cases the five cir-
cles are returned as a result of image segmentation (which
would be the ideal segmentation), it is impossible to distin-
guish between the images without any notion of layout in
the representation. In this case, indexing algorithms (with-
out layout information) will be less efficient because the
set of candidate models will be unnecessary large. More
importantly, indexing algorithms can be less accurate by
ignoring layout. See Figure 2 for an illustration of a case
where a low similarity score will be calculated for similar
images, if only shape similarity is taken into account. If
one of these images is a query, neither of the other two will
be returned based on shape similarity. However, according
to trademark experts, if these image were to be registered
as real trademarks within similar product or service cate-
gories, a conflict of uniqueness may arise [10].

Within the area of content-based image retrieval, a
lot of work has been devoted to spatially oriented retrieval.
One of the most popular techniques often used for this pur-
pose is based on string matching. To produce the strings
that encode layout, the centres of mass of all objects are
projected on the x and y axes. By taking objects from left
to right and from below to above, and by representing these
objects by a class identifier, two one-dimensional strings
are formed that together form the 2D-String [3]. A num-
ber of modifications and extensions to this idea have been
presented, see [9, 6, 2] for a some examples. A major draw-
back of these symbolic projection methods is that in general
they are not rotation invariant.

In this paper, we propose a new spectral encoding for
layout of shapes that can be represented and compared ef-
ficiently. Recent studies [11] have shown how spectral rep-
resentations of layout can be used to index trademark col-
lections. With the proposed encoding however, that follows
some of the ideas of [12], we are able to discriminate better
between different configurations, as we take into account
more information without sacrificing any efficiency.
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Figure 1. Example of different configurations of the same
primitive shapes, with decreasing layout similarity

from lefttoright.

Figure 2. Three trademarks with similar layouts, but dis-
similar primitive shapes.

1.1 Our contributions

The main contribution of this paper is a new method for ef-
ficient retrieval of trademark images, or images in general,
that is based on the layout of the different shapes the image
is composed of.

To this end, a graph is constructed for each image in
which the layout of the trademark is encoded. After asso-
ciating a matrix with each graph, the spectra (sorted sets of
eigenvalues) of these matrices are compared for similarity
evaluation. However, unlike most spectral methods, that
usually focus on connectivity, several types of additional
information are taken into account as well. For this pur-
pose, we will use the spectrum of a Hermitian matrix. In
Section 2 details about Hermitian spectra and how to match
them are given.

This work proposes a way to encode both precise
directional and topological relations between the compo-
nents. These additional (graph) properties are reflected in
the spectrum that is used for similarity evaluation during
indexing. Details on the graph construction and calcula-
tion of attributes are given in Section 3. By obeying several
constraints on the definition of the graph’s topology and
geometry measurements, and by encoding these values in a
Hermitian matrix, we can mimic the spectral behaviour of
the Laplacian matrix. The obtained spectrum can therefore
be used for efficient retrieval, as the Laplacian spectrum
has been proven to be reliable for this purpose in recent
studies [11, 4]. Finally, in Section 4, experiments show the
increase in representational power of the encoding over ex-
isting methods.

2. Hermitian spectral representation

One of the most natural and informative algebraic struc-
tures to associate with a graph is its Laplacian matrix. This
matrix is defined as L(G) = D(G) − A(G), where D(G)

is the diagonal matrix containing node degrees, and A(G)
is representing G’s connectivity; the entry Ai,j is 1 if nodes
i and j are connected, 0 otherwise. As a result, for all rows
in L(G) the sum of the entries is 0. The spectrum of the
Laplacian matrix can be used as a signature representation
for the graph, and thus for the model that is represented by
the graph. This signature representation can be used for ef-
ficient retrieval purposes (indexing), [4]. One of the main
reasons for this is that many graph properties and invari-
ants are implicitly or explicitly reflected by the Laplacian
spectrum [8]. Moreover, cospectrality for non-isomorphic
graphs tends to be rare [13] and similar Laplacian matrices
have similar spectra due to the interlacing theorem for two
graphs where one is a slightly modified version of the other
[7].

In the case of a weighted graph, Lw(G) = DwG −
AwG can be obtained. In this case, Dw(G) is a diagonal
matrix containing for each node the sum of edge weights
of its incident edges. Correspondingly, in the adjacency
matrix the entry Ai,j represents the weight associated with
nodes i and j, which is 0 if there is no connecting edge be-
tween them. Therefore, all information with respect to the
graph’s connectivity is still present in Lw(G), since every
non-zero entry indicates the existence of an edge between
the corresponding nodes.

In order to preserve the useful properties of a normal
Laplacian spectrum, every edge weight wa,b should satisfy
the following conditions:

Wa,b = Wb,a, where a, b ∈ V (1)
Wa,b ≥ 0, where a, b ∈ V (2)
Wa,b 6= 0, iff a and b are adjacent in G (3)

Equation 1 ensures a symmetric matrix, whereas
equation 3 ensures that the connectivity of the graph re-
mains unchanged after weighting the edges.

Unfortunately, it is not possible to store more infor-
mation in a Laplacian matrix than the graph’s connectiv-
ity together with the edge weights. As a consequence, a
spectral representation using this matrix will suffer in most
cases from significant information loss, since other graph
characteristics such as node labels, node locations (planar
graphs, 3D graphs) or additional edge measurements are
not captured by the encoding.

Therefore, following the ideas of [12], we use a Her-
mitian matrix to store graph characteristics. However, to
really mimic the spectral behaviour of a Laplacian matrix,
we added two additional constraints to the construction of
the Hermitian matrices. First, we give a brief theoretical
background on Hermitian matrices, and then we impose the
constraints for mimicking Laplacian spectral properties.

A Hermitian matrix H (or self-adjoint matrix) is a
square matrix with complex entries that is equal to its own
conjugate transpose. In other words, Hi,j is equal to the
complex conjugate of Hj,i. Fortunately, every Hermitian
matrix has a real valued spectrum. The corresponding
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eigenvectors however contain complex entries. By adding
several additional constraints to the construction of H, we
can mimic the spectral behaviour of a Laplacian matrix, i.e.
we can construct a property matrix H(G) for G = (V,E)
in such a way that we can use its spectrum for retrieval pur-
poses equally well as the Laplacian spectrum.

To this end, the off-diagonal elements of H are chosen
to be complex numbers written in polar form using Euler’s
formula:

Ha,b = −Wa,be
iya,b (4)

where each edge has the pair of observations (Wa,b, ya,b).
The second observation, represented as the phase of the
complex matrix entry, must satisfy the following condi-
tions:

ya,b = −yb,a (5)
−π < ya,b < π (6)

The first condition (5) ensures that H is equal to its
own conjugated transposed matrix. By obeying the second
constraint (6), phase wrapping can be avoided.

The on-diagonal entries (that are required to be real)
are chosen to be

Haa =
∑
b6=a

Wa,b (7)

In this way, the entries in each row of the matrix now sum
up to zero. This on-diagonal entry is necessary, because
all edge weights Wa,b (magnitudes) are inserted as −Wa,b,
see (4). By summing up the edge weights and inserting this
sum as on-diagonal entry, the sum of the entries in each
row is zero. We would like to stress that this is a neces-
sary property to correctly mimic the spectral behaviour of
Laplacian matrices, contrary to the Hermitian matrix that is
used in [12] (where additional node measurements on the
diagonal are allowed). Furthermore, edge weights (magni-
tudes of the complex entries) should be calculated in such a
way that an edge between two nodes can never be weighted
0, for it would destroy the connectivity of the graph.

2.1 Retrieval based on spectra

It is the key function of any indexing algorithm to speed
up the retrieval process by selecting a small set of candi-
date models that are either presented to the user, or passed
on to a more refined matching unit in the retrieval pipeline.
The representation used here during indexing is a spectral
one, which is basically a d-dimensional vector of features
where d is the number of nodes in the graph, or the size
of the Hermitian matrix. Therefore, to evaluate similarity
between two objects, we calculate the Euclidean distance
between their feature sets, i.e. between their Hermitian
spectra. When trademarks are of different size, the spectra
are of different dimension. There are several ways to deal
with this problem. It is possible to enlarge the spectrum of
the smaller trademark by inserting zeros. This is semanti-
cally correct, since it means isolated nodes are added to the

graph. Another possibility is to decompose the graph into
several subgraphs, and match only subgraphs of the same
size. For more details on how to handle graphs of differ-
ent sizes, we refer to [11]. In the rest of this paper we will
assume graphs are of the same size.

In order to index a large data set efficiently,
the vectors can be accessed through a Balanced-Box-
Decomposition Tree (BBD-Tree), as introduced in [1].
This data structure is proven to be optimal for (1 + ε)-
approximate nearest neighbour searching 1, where k ap-
proximate nearest neighbours in a d-dimensional space can
be reported in O(kd log n) time.

3. Graph attributes

With the goal to describe a trademark, we construct the
graph whose nodes represent the shapes of the trademark
revealed after the segmentation phase. We connect each
node with its six nearest neighbours based on the dis-
tance between the barycenters of the corresponding shapes.
There are many possible attributes that can be used to en-
rich a graph structure with additional shape information.
To name a few, the attributes can be the area, perimeter,
curvature of the corresponding segment, whereas the edges
can be weighted with the distance or the angle between the
shapes. The scope of our work is to represent the layout
of the trademark. To this end, we will use the information
about the location and intersection of shapes with respect
to each other. Moreover, the use of the Hermitian matrix
for the graph encoding imposes the constraints (1)-(3), (5)
and (6) which the graph attributes should satisfy.

3.1 Directional attributes

For the description of the position of one shape with re-
spect to the other we chose the angular measure. Precisely,
we compute the angle between the two lines formed by the
end points of an edge and the barycenter of the trademark.
See Figure 3 for an example. This attribute satisfies the
conditions (5) and (6) and thus can be used as the phase of
the complex off-diagonal entries of the Hermitian matrix.

3.2 Topological attributes

Egenhofer and Franzosa [5] pointed out that there are 8 ba-
sic topological relations: disjoint, contains, inside, meet,
equal, covers, covered-by and overlap. These relations, or
intersection types, can be partially captured with one inter-
section measure on two components, which we define as

Wab =
Areaab

Areaa + Areab

1An object is a (1 + ε)-approximate k-nearest neighbour of the query
if its distance to the query is within a factor of (1 + ε) to the distance
between the query and its true k-nearest neighbour.
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Figure 3. Computation of directional attributes: angle be-
tween lines formed by connecting the two end points of

each edge to the trademark’s barycenter.

(a) (b) (c) (d)

A

B

A
B B

A A

B

where Areaab is the area of the union of the components a
and b. The area of a component is measured by the num-
ber of pixels occupied including boundary pixels. For two
separated segments the intersection measure is equal to one
and decreases as the intersection area increases. Figure 4
illustrates different types of the intersections. The intersec-
tion measure satisfies the conditions (1)-(3) and thus can
be used as the magnitude of the complex elements of the
Hermitian matrix.

4. Experiments

To evaluate the effectiveness of the proposed approach, we
focus on comparing several typical examples of shape con-
figuration. Therefore, in this section we will assume that
segmentation reveals the individual shapes, and calculates
the angular and topological values. Furthermore, we will
assume that the graphs that are compared are of the same
size, i.e. they have the same number of vertices. For de-
tails on an appropriate segmentation technique, and on how
to work with graphs of different sizes we refer to a recent
study [11].

In this Section, we will evaluate how distances be-
tween pairs of trademarks change when topological and di-
rectional changes in the configuration occur. At this point,
we would like to point out that every distance will be 0,
should each image be represented by the spectrum of its
normal Laplacian matrix. When a weighted Laplacian ma-
trix is chosen as associated structure, angular or directional
changes in the configuration are not revealed during simi-
larity evaluation.

Table 1. Distance matrix for different topological configu-
                               rations of 12 circles.

dist

0 0.023 0.107 1.067 5.441

0.023 0 0.084 1.044 5.420

0.107 0.084 0 0.960 5.343

1.067 1.044 0.960 0 4.474

5.441 5.420 5.343 4.474 0

In the first experiment, all pairwise distances between
5 configurations of 12 circles are calculated. The angles
between the circles are the same in all images, the overlap
varies from disjoint to touching, overlapping, more over-
lapping and inclusion. See Table 1 for the results of this
experiment together with the images that are used for cal-
culation. The results clearly show how distances increase
when overlap increases. The experiment is repeated with
configurations of four squares in Table 2. Again, the angles
between the squares remain constant, while the overlap in-
creases from no overlap to inclusion. For these examples,
distances grow proportionally with increasing overlap as
well. Furthermore, this experiment shows that calculation
of the topological attributes is dependent on the shape of
the components. For instance, a larger distance is found
for configurations of squares than of circles between a dis-
joint configuration and a touching configuration (first row,
second column of both Tables 1 and 2).

The third experiment, of which the results are given
in Table 3, shows the benefit of the directional information
in the encoding. All these distances would have been 0 us-
ing normal or even weighted Laplacian matrices as a rep-
resentation. The distances listed in Table 3 coincide with
the perceived similarity between the images. For example,
the first and the third images both appear to have a smaller
distance to each other than to all other images, which is a
desired result in this case.

The images used for the final experiment have varia-
tions in both topological and directional configuration. As
the results show in Table 4, even with these combined al-
terations, distances reflect the similarity in layout. Take for
instance the pair of the first and fourth images, that have
a closer distance to each other than to all other images.
Furthermore, the influence of the enclosing frame in the
fifth image is clearly present, since it has a large distance to
all other models. Finally, the two images containing only

Figure 4. Different intersection types for the shapes
AreaA = 4, AreaB = 1. (a) separate shapes WAB = 1,
(b) touching shapes WAB ≈ 1, (c) intersecting shapes
WAB = 0.91, (d) shape a includes shape b WAB = 0.8.
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Table 2. Distance matrix for different topological configu-
                           rations of 4 squares.

dist

0 0.036 0.167 0.489 1.046

0.036 0 0.161 0.453 1.014

0.167 0.161 0 0.333 0.899

0.489 0.453 0.333 0 0.643

1.046 1.014 0.899 0.643 0

Table 3. Distance matrix for different angular configura-
                            tions of 5 circles.

dist

0 1.119 0.531 1.933 1.24

1.119 0 0.917 0.875 0.237

0.531 0.917 0 1.782 1.108

1.933 0.875 1.782 0 0.716

1.24 0.237 1.108 0.716 0

Table 4. Distance matrix for different configurations 4 of 
                    shapes with mixed properties.

dist

0 0.446 0.922 0.173 1.446

0.446 0 0.582 0.513 1.208

0.922 0.582 0 0.902 0.695

0.173 0.513 0.902 0 1.356

1.446 1.208 0.695 1.356 0

disjoint components (second and third image) are close to
each other, but still have a nonzero distance because of dif-
ferences in directional attributes.

5. Conclusion

In this paper we have presented a new approach for encod-
ing layout between image components that, together with
the shapes of the components, is important for evaluating
similarity between images. Both directional and topologi-
cal relations between image components that are near each
other, are encoded in a rich graph structure. By associ-
ating a Hermitian matrix to the graph, and by obeying sev-
eral constraints on the computation of edge weights, we are
able to capture more edge information (together with the
connectivity) in a spectral representation that mimics the
behaviour of Laplacian spectra. Therefore, similarity eval-
uation is efficient and accurate, and the proposed approach
can be successfully applied as an indexing mechanism.

The next step will be to evaluate the new approach
within the context of a real retrieval environment. Al-
though it was shown before that spectral representations are
well suited for this kind of retrieval purposes, and we have
shown in this paper that the new Hermitian spectral repre-
sentation is more discriminating and provides distance val-
ues that reflect layout similarity better, it is important to
investigate retrieval performance on a real data set of trade-
mark images. To do so, we will make use of a large col-
lection of real trademark images that has been classified by
trademark experts who evaluate trademark similarity on a
daily basis. We will compare our results to other meth-
ods using popular and representative performance mea-
sures such as Average Dynamic Precision, Mean Cumula-
tive Gain Vectors and Mean Discounted Cumulative Gain
Vectors.
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Furthermore, it is one of our interests in the near fu-
ture to explore part-based similarity between graphs using a
spectral approach. Since the eigen decomposition of a Her-
mitian matrix reveals the eigenvectors as well as the spec-
trum, we automatically obtain the eigenvector associated
with the second smallest eigenvalue (the so-called Fiedler
vector and Fiedler value respectively) [8]. The Fiedler vec-
tor can be used for partitioning the graph in sensible parts,
avoiding the computationally expensive inspection of all
possible subgraphs of all different sizes. These subgraphs
can be represented again by their Hermitian spectra. A vot-
ing schema will be necessary to combine search results for
complete and partial graphs.
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