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1 Introduction

In this work package we develop algorithms for matching two planar shapes. We assume
that shapes are modeled by sets of plane simple polygons. Other than in previous work on
objectives 3 and 4 the interiors of the polygons are considered as part of the shape, as well,
not only their boundaries. As possible classes of transformations we will consider translations,
rigid motions (i.e., translations and rotations), and similarities (i.e., translations, rotations
and scalings).

The general situation is that we are given two objects A and B and a set T of allowable
transformations and we want to transform B optimally so that the transformed image of B is
as close to A as possible. Usually the quality of match is measured by some distance function
or similarity measure δ(A,B) which assigns a distance value to any pair of objects A and B.
An established distance measure for planar regions that is insensitive to noise is the area of
the symmetric difference of these regions, which is defined as the area of the union of A and
B minus the area of the intersection of A and B. Note, that for matching under translations
and rigid motions minimizing the area of the symmetric difference is equivalent to maximizing
the area of overlap.

Most previous work on the problem has been restricted to matching under translations.
Mount et al. [22] analyze the combinatorial complexity of the function mapping a translation
vector to the area of overlap of a translated simple n-vertex polygon with another simple m-
vertex polygon. They show that this function is continuous, piecewise polynomial of degree
at most two, has O(n2m2) pieces and can be computed within the same time bound. De Berg
et al. [7] consider the case of convex polygons and give an O(n log n) time algorithm, where
n is the total number of vertices of two polygons. Alt et al. [3] give a linear time constant
factor approximation algorithm for minimizing the area of the symmetric difference of two
convex polygons under translations and homotheties (i.e., translations and scalings).

Surprisingly little is known about the problem if arbitrary rigid motions are allowed.
Cheong et al. [6] gave a general probabilistic framework for maximizing the overlap of two
shapes. This framework computes an approximation with prespecified absolute error in near
quadratic time for translations and near cubic time for rigid motions. Finally, Ahn et al. [2]
describe a (1− ε)-approximation algorithm for maximizing the area of overlap of two convex
polygons under translations and rigid motions.

We developed a probabilistic algorithm that maximizes the area of overlap of two given
shapes under translations and rigid motions, which is equivalent to minimizing the area of
the symmetric difference for these two classes of transformations. The method we introduce
is related to the generalized Hough transform, and similar techniques called pose clustering or
evidence gathering, which are widely used in pattern recognition. But instead of discrete sets
of features in image and model, as in a typical setting in a pattern recognition task, we are
dealing with compact plane regions. The idea is to take random samples of points of suitable
size from each region set and record a vote for the transformation matching one sample to
the other. The sample size depends on the allowable class of transformations and is such,
that there exists a unique transformation that maps one sample to the other. Repeating this
experiment many times we obtain a certain distribution of votes in transformation space. We
show that transformations with the highest number of votes are exactly those, maximizing the
area of overlap of the given sets of regions for the cases of translations and rigid motions. For
similarity transformations the description of the resulting distribution is a bit more complex,
we will give a detailed analysis.
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On the other hand, evaluating algorithms for matching sets of curves, in collaboration
with Aktor Knowledge Technology we found out that the intuitive and widely used concept
of matching as finding a transformation that maps one shape to the other, does not cover all
aspects of perceived similarity (See Figure 1 for an example.).

A B

Figure 1: Two images perceived as similar, for which no affine transformation exists that
maps B onto A.

Therefore, we developed an algorithm for matching based on image primitives. It disre-
gards the concrete position of the objects contained in the images, but concentrates on their
shape and on their relative positions. An image is decomposed into a set of salient primitive
shapes, such as ellipses, rectangles, triangles as well as convex polygons. Parts of the im-
age that do not belong to one of these simple classes are grouped together and classified as
complex shapes. The identified objects get weights according to their size and “prägnanz”,
as understood in gestalt theory. Moreover, we observed that some trademark images contain
frames and that these frames are hardly relevant for perceived similarity. When an object
is recognized as being a frame, its weight is decreased. Two images are compared based on
the similarity between the objects and on their relations. The experiments we made with
a preliminary implementation show convincing results encouraging further research in this
direction.

2 Results

2.1 Probabilistic matching

2.1.1 The similarity measure

We want to compare shapes that are regions in the plane. An established similarity measure
for regions is the area of overlap. Two shapes are understood as similar if they overlap
much. Psychological studies show that the area of overlap is an essential factor for perceived
similarity [23].

The first row of Figure 2 shows two discs, one of them with noise added. Figures extracted
from digital images often contain noise that should not affect the similarity of the figures.
Since noise is expected to have a very small area, this is not the case if similarity is measured
by the area of overlap. So one advantage of the area of overlap as similarity measure is its
insensitivity to noise.

Nevertheless, there are examples where the area of overlap does not quite capture perceived
similarity. An instance is shown in the second row of Figure 2, where the two shapes are
perceived as quite different but the area of overlap is quite large if the blot is moved on top
of the star.

The last row of Figure 2 indicates that comparing regions is a different matter than
comparing curves. All common similarity measures for curves would assign a very small
distance to the disc and the ring but the distance measured by area of overlap is very large.
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If no scaling is allowed maximizing the area of overlap is the same as minimizing the
symmetric difference which is a metric on the set of all shapes.

Figure 2: Some examples for the area of overlap as similarity measure.

2.1.2 The algorithm

Suppose that two regions A and B in R2 and a set of transformations F are given. We present
a randomized algorithm finding a transformation f ∈ F that approximately maximizes the
area of intersection of the transformed shape f(A) and B. We will investigate the cases
where the set of transformations F consists of translations, rigid motions, and similarities. A
rigid motion consists of a rotation angle and a translation vector, a similarity is composed of
rotation, translation and scaling.

We define shapes quite generally as Lebesgue measurable sets in R2. Suppose, there are
given a fixed, small δ > 0, two shapes A and B, and a set of transformations F which is
identified with a subspace of some Rk. We examine the following algorithmic scheme:

1. For i = 1, . . . , n choose uniformly distributed a random point sample of suitable size in
A and a random point sample in B.

2. Give one vote to the unique transformation in F that maps the sample from A onto the
one from B.

3. Determine and return the transformation whose δ-neighborhood in F obtained the most
votes.

Of how many random points one sample consists depends on the selected set of transforma-
tions. Size and form of a sample are chosen in a way that there exists exactly one transfor-
mation that maps one sample onto another sample.
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The votes approximate the probability distribution in F resulting from the experiment.
The output of the algorithm is a transformation whose δ-neighborhood in F has approximately
highest probability. If δ is small enough this transformation is one at which the density
function of the probability distribution is maximal.

In the following it is shown that for translations and rigid motions the density function
of the probability distribution in f ∈ F equals the area of overlap of f(A) and B. Thus, the
algorithm gives a transformation that approximately maximizes the area of overlap.

For similarities we do not have an equally simple characterization. Nevertheless, we will
derive a formula of the density function and give an intuitive explanation. Furthermore, it is
shown that the induced similarity measure is not symmetric in case of similarities.

All proofs are listed in Appendix A.

2.1.3 Translations

In case of translations a random point sample consists of one point in each shape because if we
choose a point a ∈ A and a point b ∈ B, there is exactly one translation that maps a onto b,
namely t = b−a. The transformation space T equals R2 where a point (t1, t2) ∈ T means the
translation (x, y) 7→ (x + t1, y + t2). Note that (−A)⊕B contains exactly those translations
that map at least one point of A onto a point of B, where ⊕ denotes the Minkowski sum.

For a region G ⊂ R2 we denote its area by |G|. For a translation t ∈ T we denote the
δ-neighborhood of t with respect to the maximum norm by Bδ(t).

We are interested in the area of the intersection of A translated by t with the shape B
denoted by

µ(t) = |(A + t) ∩B|.

Let S be a set of n translations resulting from the experiment. The number of votes for the
δ-neighborhood of t is given by |S ∩Bδ(t)|. Our estimate of the probability that a translation
resulting from one random experiment lies in the δ-neighbourhood of t is the ratio of the
number of votes for the δ-neighborhood of t to the number of all votes, namely |S∩Bδ(t)|

|S| . We
need to normalize this value with the sizes of the shapes and the size of the neighborhood of
t to get an estimate eS(t) of µ(t):

eS(t) =
|S ∩Bδ(t)| · |A| · |B|

|S| · |Bδ(t)|
.

It can be shown that the error of the estimate becomes small if n is large enough. More
precisely, it can be shown that for each ε > 0, p < 1 and each δ > 0 there is a n ∈ N such that
the error |µ(t)− eS(t)| is less then ε with probability at least p. We achieve this by proving
the following lemma:

Lemma 2.1. For all shapes A and B, δ > 0 and t ∈ T with probability at least 1 − 2e−
ε2·n

2

it holds
|µ(t)− eS(t)| 6 |A| · |B| · ε

4δ2
+
√

2∆δ

where ∆ denotes the maximum of the lengths of the boundaries of A and B.

From this lemma it follows that in case of translations the algorithm returns a translation
that approximately maximizes the area of overlap of a translated copy of A with the shape B
for all shapes A and B. More formally: Let t∗ be the map that maximizes the estimate eS(t)
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and let topt be an optimal solution. If the approximation error |µ(t)− eS(t)| is less than ε
then the difference between approximation and optimum is at most 2ε:

µ(t∗) > eS(t∗)− ε > eS(topt)− ε > µ(topt)− 2ε.

A bound for the required number of random samples in case of translations. For
translations we can deduce a concrete bound for the required number of random samples from
Lemma 2.1.

Corollary 2.2. Let ε̃ > 0 and p ∈ [0, 1]. Let t∗ be the map that maximizes the estimate eS(t)
and let topt be an optimal solution. If

n >
|A|2|B|2(− log(1−p

2 ))

8δ4(|B|ε̃−
√

2∆δ)2

the approximation error |µ(topt)− eS(t∗)| is less than 2ε̃ with probability at least 1 − p. The

bound is minimal for δ =
√

2|B|ε̃
3∆ .

The theoretical bound for n seems to be quite pessimistic. Our test implementation shows
that the real convergence is much faster than the bound indicates. In fact, the results that
our preliminary implementation shows for translations are very promising.

2.1.4 Rigid Motions

The space of rigid motions is given by R = [0, 2π) × T ⊆ R3 the first coordinate defining
the anti-clockwise rotation angle. A point (α, (t1, t2)) ∈ R denotes the map defined by
(x, y) 7→ Mα

(
x
y

)
+

(
t1
t2

)
.

Observe that there exists exactly one translation that maps a point p ∈ A onto a point
q ∈ B while there exist infinitely many rigid motions that map p onto q. To be more precise,
for each α ∈ [0, 2π) there is exactly one rigid motion whose anti-clockwise rotation angle is
given by α and that maps p onto q. This rigid motion is given by r = (α, q−Mαp) where Mα

is the rotation matrix
(

cos α sinα
− sinα cos α

)
.

If we choose two random points p and p′ in A and two random points q and q′ in B
there is exactly one similarity that maps p onto q and p′ onto q′. (To determine one affine
transformation we need 3 points from each shape.) If we want to determine exactly one
rigid motion there is no size of the random sample that works. Therefore we pick uniformly
distributed a random angle α in [0, 2π), one point a in A and one point b in B. We give one
vote to the unique rigid motion with anti-clockwise rotation angle α that maps a onto b.

If we do this experiment very often we get an approximation of a probability distribution
on R. The algorithm returns a rigid motion whose δ-neighborhood in R got the most votes
and thus has approximately highest probability. If δ is small enough the rigid motion whose
δ-neighborhood in R has highest probability is the rigid motion at which the density function
of the probability distribution is maximal.

Lemma 2.3. The density function on R is given by f(r) = |r(A)∩B|
2π·|A|·|B| .

Because of this lemma as in case of translations it holds that also in case of rigid motions
the output of the algorithm is a rigid motion that approximately maximizes the area of
overlap. For matching under rigid motions we can derive similar approximation error bounds
as in the case of translations.
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2.1.5 Similarities

For matching under similarities, our experiment consists of choosing two random points a and
a′ in A and two random points b and b′ in B. Then there is exactly one similarity that maps
a onto b and a′ onto b′. We parameterize the space of similarities S ⊆ R4 in the following

way: (s1, s2, s3, s4) ∈ S denotes the similarity
(
x
y

)
7→

(
s1 s2

−s2 s1

) (
x
y

)
+

(
s3

s4

)
, so s1 is the

product of scaling factor and cosine of the anti-clockwise rotation angle, s2 is the product
of scaling factor and sine of the rotation angle and

(
s3

s4

)
is the translation vector. Having

chosen a, a′, b, b′ the scaling factor λ is given by ‖b′−b‖
‖a′−a‖ , the cosine of the rotation angle α is

<a′−a,b′−b>
‖a′−a‖·‖b′−b‖ , the sine is

det ((a′−a)

(b′−b))
‖a′−a‖·‖b′−b‖ (where (a′−a) and (b′−b) are written as row vectors) and

the translation vector is given by b − λMαa. The following formula for the density function
on S can be shown:

Lemma 2.4. The density function f of the probability distribution resulting from the exper-
iment on S is given by

f(s) =
1

|A|2 · |B|2

∫
(A∩s−1(B))2

‖a′ − a‖2d(a′, a).

Intuitively, the density function is large and thus the probability of a small neighborhood
is large as well if essential parts of A have a large distance from each other. The density
function is large if A has a elongated shape in contrast to a circular shape.

Since for all a, a′ ∈ C the squared distance ‖a′ − a‖2 is less than the squared diameter
diam(C)2 the following holds

Proposition 2.5. For shapes A,B ⊆ R2 and a similarity s ∈ S it holds

f(s) 6
diam(A ∩ s−1(B))2 · |A ∩ s−1(B)|2

|A|2 · |B|2
.

For similarities the algorithm is not symmetric as the example in Figure 3 shows. If A is a
dumbbell and B is a disc the algorithm returns a similarity that shrinks A into B because the
density is maximal for this similarity. If A is a disc and B is a dumbbell the two similarities
with highest density are the translations that put A on top of one of the discs of the dumbbell.

Figure 3: Matching A with B under similarities gives a different result than matching B
with A.
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2.1.6 Experiments

We did a preliminary implementation of our algorithm for translations, rigid motions and
similarities. In this test implementation the clustering of the transformations is done by
bucketing: the transformation space is divided into cubes of suitable dimension and the cube
with the highest number of votes is returned.

Even with the simpler clustering method the experiments confirm our theoretical results
for the cases of translations and rigid motions. Our experiments also show that the theoretical
bound for the number of necessary samples in case of translations is quite pessimistic, we
observed a much faster convergence of the approximation error in practice.

Two screenshots below show examples of matching under translations and rigid motions.
The center of the window shows the shapes A and B and the image of A under the transfor-
mation computed by the algorithm. The pictures below show the distribution of the votes.
On the left hand side a point is drawn for each translation that obtained a vote and on the
right hand side the votes for angles are drawn on a circle, in the case of rigid motions.
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2.2 Matching based on Image Primitives

2.2.1 Motivation

For the comparison of figurative images represented by sets of (polygonal) curves we developed
algorithms (objective 3) that were based on finding similarity transformations that match the
two images. This works well for images whose parts lie close together and whose parts do not
differ much in perceived significance.

Although one of the laws invented by gestalt theory states that configurations cannot be
analyzed into parts and relations [14], for multi-component images the comparison based on
the individual image components is more effective than a comparison based on the whole
image [11].

With regard to the ground truth provided by professional trademark examiners (see sec-
tion 2.2.3), some observations can be made which are formulated as follows:

• People look for figures in the image that can easily be memorized. These figures may
be abstract figures such as squares, circles, and triangles or figures of everyday life such
as letters, digits, and stylized eyes or paperclips. If such figures exist within the image,
their concrete proportions and positions play a minor role (see appendix B figs. 5 and 6).
This is supported by the facts that:

– a small number of common shape elements can form a basis for humans to dis-
criminate between a wide variety of images [9] (cited in [12]).

– ”there is an unconscious effort to simplify what is perceived into what the viewer
can understand”. [13] (cited in [5])

• If the image consists of spatially independent parts, the size of the gaps in between
plays a minor role (see appendix B fig. 7).
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• If an essential part of the image is framed, the shape of the frame and even the existence
of the frame play a minor role (see appendix B fig. 8). In [16] experiments on the way
humans decompose figurative images were made. 5 of the images had a frame, for 3 of
them all subjects completely ignored the frame and for 1 image only the second least
significant decomposition (out of 9) contained the frame.

• Looking at a figurative image, the number of essential parts that are perceived is typ-
ically very small. For example in a regular pattern of little circles, one does normally
not discriminate between the different circles, but group them together to a ’pattern of
circles’. Moreover when comparing such patterns it plays only a minor role whether 16
circles form a 4× 4 grid or whether 25 circles form a 5× 5 grid.

Our approach for comparison of figurative images is based on a very simple idea: try to char-
acterize a figurative image the same way humans would do. If there is a circle in a triangle,
characterize it as ‘a circle in a triangle’, if there is something never seen before, character-
ize it as ‘something never seen before’ and describe it by what is known about it — in our
case the region as given by the bounding polygonal curve. Many patent offices use such a

Figure 4: actual trademark images — some easy to describe by geometric primitives and some
not.

characterization based on the so called Vienna classification [1]. The codes for the examples
given in fig. 4 would possibly be ‘26.3.10 Triangles containing one or more circles, ellipses
or polygons’ and ‘26.13.25 Other geometrical figures, indefinable designs’ respectively.

Following this idea in our approach, an image is divided into a set of (not necessarily spatially
independent) parts — preferably simple and salient geometric figures. These parts are clas-
sified, weighted, and related. The relationships are weighted as well. Comparing two images
is accomplished by searching for subsets of the parts and their relations that match well.
The comparison of the parts is done independently, leaving aside their relative sizes and po-
sitions. It can be done using a similarity measure that works well for shapes whose parts lie
close together whereas the resulting measure can handle arbitrarily composed shapes.
In [17] a similar approach of dividing the images into geometric primitives and finding a
match between these primitives is proposed. Its main drawbacks are 1.) that the compar-
ison of the primitives does not discard their concrete positions and 2.) that the similarity
between primitives belonging to different categories is defined as being zero, which is contrary
to human perception e.g. when comparing a circle and a regular 12-gon.
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2.2.2 Technique

It is assumed that figurative images are given as a set S of polygonal regions s1 . . . sm. Based
on these polygonal regions a set P of figures p1 . . . pn is extracted and “ relations” R =
r1,2 . . . rn,n−1 among them are computed.
The process of figure detection is not described in detail here, but the decomposition is
assumed to be part of the input. For the experiments in sec. 2.2.3 however, a simple proof-
of-concept implementation was used.

Figures The figures can either be simple geometric objects (image primitives) or more
complex objects. The primitives considered in our implementation are:

• ellipses (as a generalization of circles)

• rectangles (as a generalization of squares)

• triangles

The parts of the image that cannot be represented by these primitives are categorized as

• convex polygons

• arbitrary sets of polygons and polylines

Analogously to concentric circles, ‘concentric’ ellipses, rectangles, triangles, and convex poly-
gons are combined to a single figure with multiple layers.

Relations For a pair (pi, pj) ∈ P × P, i 6= j of figures the relation ri,j consists of numerical
values reflecting

• the size of pj relative to the size of pi (The size of a figure is defined to be the perimeter
of the bounding box that maximizes the aspect ratio.)

• the relative distance of pj to pi (The distance of the centers relative to the size of pi.)

• the qualitative relation, i.e., whether pi and pj are very similar, just mirrored, or just
rotated etc.

Comparison of two images For the comparison of two images I1 and I2 the relevance wP

of the figures and the relevance wR of the relations is preset such that wP + wR = 1 — for
images consisting only of one type of figures, e.g., only squares, the relations between these
figures are of greater importance than for images consisting of totally different figures. The
figures and relations get weights w(pi) and w(ri,j) such that for each image all weights sum
up to 1, namely:

∑
p∈P w(p) = wP and

∑
r∈R w(r) = wR.

For every pair (p1
i , p

2
k) ∈ P 1 × P 2 of figures and every pair (r1

i,j , r
2
k,l) ∈ R1 × R2 of relations

a value of similarity s ∈ [0, 1] is computed, using simple measures of similarity as described
later.

Let M be the set of all one-to-one matchings between figures of image I1 and image I2. The
value of similarity of the two images is then defined as the weighted sum of the similarities
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of the matched figures, plus the weighted sum of the similarities of the (implicitly) matched
relations:

s(I1, I2) = max
M∈M

{ ∑
(p1,p2)∈M

s(p1, p2) · w(p1) + w(p2)
2

+

∑
(p1

i ,p2
k)∈M

(p1
j ,p2

l )∈M

s(r1
i,j , r

2
k,l) ·

w(r1
i,j) + w(r2

k,l)
2

}

The problem of determining whether s(I1, I2) ≥ θ for a given threshold 0 < θ ≤ 1 is an exten-
sion of the quadratic assignment problem (see e.g. [21]) and therefore is NP-complete1. Since
the number of essential parts that are perceived is typically very small, the admissible number
of figures that represent an image can be bounded by a small constant (see section 2.2.3).
Thus, the value of similarity s(I1, I2) may even be computed using methods having a high
asymptotic runtime which would not be acceptable in a different context:

1. using a weighted association graph G1,2 = (V,E).
The vertex set V = P 1×P 2∪R1×R2 consists of all possible pairs of figures of I1 and I2

and of all pairs of relations of I1 and I2. The weight w(v1, v2) of a vertex v = (v1, v2) is
the product of the similarity and the arithmetic mean of the weights of the two figures
or relations respectively: w(v1, v2) = s(v1, v2) · 0.5 ·

[
w(v1) + w(v2)

]
Between any two vertices v1, v2 an edge is inserted into the graph G1,2, if and only if
choosing the two underlying pairs would lead to a contradiction (e.g. if a figure p1

a of I1

is matched to a figure p2
b of I2 it cannot be matched to a figure p2

c at the same time).

The value s(I1, I2) equals the weight of the maximum (weight) independent set of
vertices in G1,2 which can be approximated using the greedy algorithm described in [18].

2. using a branch and bound algorithm for enumeration of the promising matches.

Weights Every figure pi gets an absolute weight wa(pi) which equals the square root
of the figure’s size (perimeter of the figure’s bounding box that maximizes the aspect ratio).
Every relation ri,j gets an absolute weight wa(ri,j) based on the weights of the figures pi and pj .
Before the comparison the weights are normalized such that

∑
w(p) = wP and

∑
w(r) = wR.

If we compare two images I1 and I2 with different numbers n1, n2 of figures, then, of course,
we can match at most as many figures as the smaller of two images has. Therefore, only the
relations for nmin = min(n1, n2) figures may be selected in the matching. In this case, the
weights of the relations of the image consisting of more figures are adjusted, such that the
maximum over all nmin-subsets of the figures of the sum of the relation weights between the
figures in a subset equals wR.

Frames For every figure the likeliness of being a frame is rated based on the following
propositions:

• frames are convex and symmetric
1The NP-completeness can easily be seen by reduction of the problem whether a graph contains a Hamil-

tonian cycle.
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• frames contain at least one complex figure or two primitive figures

• frames are not too small compared with surrounding frames

• frames are not surrounded by something that is not a frame

Based on this likeliness the weight of a frame figure is decreased by a factor ∈ [1.0, 2.0].

Repetitions If a logo contains groups of identical figures, the concrete number of these
identical figures plays only a minor role in comparison (see the appendix fig. 6) and some
trademark images even contain miscellaneous variants of the actual logo (see the appendix
fig. 5). Therefore the weights of such copies are reduced.

Underlying measures of similarity For the underlying measures of similarity be-
tween figures or relations respectively, values between 0 and 1 are required so that the result-
ing value will range from 0 to 1. In [4] such a normalized measure of similarity is described
which works respectably well for figurative images whose parts lie close together. The basic
idea behind this approach is to find a (similarity) transformation t : R2 → R2 that maps parts
of the one figure p1 into the proximity of corresponding parts of the other figure p2 and the
similarity is rated based on proximity and parallelism of t(p1) and p2. For the comparison
of image primitives (ellipses, rectangles, triangles) the values of similarity may be predefined,
for the comparison of primitives with complex figures the values may be precomputed so that
only the values for the comparison of complex figures have to be computed online.
The similarity of two relations r1

i,j and r2
k,l is computed by a formula based on the difference

in relative distances, the difference in relative sizes, and the qualitative relations i.e. whether
pi and pj are very similar, just mirrored, or just rotated etc.

Dealing with different representations Whenever such a measure of similarity de-
pends on the way the images are decomposed, there is the risk of underestimating the simi-
larity just because two images get decomposed in different ways (e.g. two triangles forming a
square vs. a square plus its diagonal). To diminish that effect, the images are also compared
using the simple similarity measure that is used for the figures. The maximum of the two
values is taken as the similarity of the images.

2.2.3 Experimental Results

The retrieval performance was tested with the same set of 10 745 trademark images and the
same 24 reference queries that were used to test the ARTISAN System [10]. Each query
consists of a query image and a list of relevant images from the test set (including the query
image). The lists of relevant images had been compiled by experienced trademark examiners.
Most of the images depict abstract geometrical figures — black shapes on white background
— but some of the figures are hatched or have texture: the number of closed contours (distin-
guishable black and white areas) exceeds 1 000 for about 800 images (7 %) and the maximum
observed is even 92 436.

From every image the set of polygonal boundary curves was extracted and polygons be-
longing to noise and texture were eliminated2. The remaining closed contours for which every

2This noise reduction is important but it is not in the main focus of our work. Therefore, a very simple
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vertex corresponds to a pixel, were then simplified using the Douglas-Peucker algorithm [8]
(cited in [15]).

The segmented images were automatically decomposed by detecting image primitives and
grouping the remaining parts based on their proximity. For images with more than one
possible decomposition a value of simplicity was computed for every decomposition (based on
regularity of the figures, symmetries, and number of figures). More than 90 % of the images
were decomposed into at most 6 figures, the maximum number of perceptually relevant figures
in an image that were identified by the segmentation was 14.

For each of the 24 queries, all images were compared to the query image and they were
ranked according to the resemblance values. Let N be the number of images, n the number of
relevant images for a query, ri the rank of the i-th relevant image, and rl the maximum rank
of a relevant image for a query. The retrieval performance was rated based on the following
values as defined in [10]:

Normalized Recall Rn Value in the range from 0 (worst case) to 1 (perfect retrieval).

Rn = 1−
∑n

i=1 ri −
∑n

i=1 i

n(N − n)

The recall gives a higher weight to success in retrieving the first few items.
The average for the 24 queries was 0.96 (0.90 early artisan, 0.94 late artisan).

Normalized Precision Pn Value in the range from 0 (worst case) to 1 (perfect retrieval).

Pn = 1−
∑n

i=1 log(ri)−
∑n

i=1 log(i)

log
(

N !
(N−n)!·n!

)
The precision gives equal weight to all retrievals.
The average for the 24 queries was 0.79 (0.63 early artisan, 0.70 late artisan).

Normalized Last-Place-Ranking Ln Value in the range from 0 (worst case) to 1 (perfect
retrieval).

Ln = 1− rl − n

N − n

The last-place-ranking indicates the number of retrieved items a user has to search in order
to have reasonable expectation of finding all relevant items.
The average for the 24 queries was 0.79 (0.56 early artisan, 0.72 late artisan).

Number of Retrieved Images n0.01 The number of relevant images, as defined by ground
truth, that are ranked by the system within the top 1 percent of the entire collection.
The sum for the 24 queries was 229 (168 early artisan).

For the detailed values of all 24 queries see the appendix table 1.

implementation was used, that was not able to process the entire collection of images. In 116 cases out of 10 745,
the texture in the image had to be removed by hand and the segmentation was redone.
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3 Deviations from plan

There have been no deviations from plan.

4 Project publications

Sven Scholz. Similarity Evaluation based on Image-Primitives. Submitted to International
Conference on Image and Video Retrieval, CIVR 2007.

Helmut Alt, Ludmila Scharf. Probabilistic matching of polygonal curves. To be published in
Dagstuhl Seminar Proceedings “Computational Geometry”, 2007, in preparaion.
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A Proofs

Proof. (of Lemma 2.1) Let t, t′ ∈ T be translations and let ∆ denote the maximum of the
lengths of the boundaries of the shapes A and B. Then the following holds

‖t− t′‖max < δ =⇒ |t(A)− t′(A)| <
√

2∆δ.

This implies ∣∣∣∣∣|Bδ(t)| · µ(t)−
∫

Bδ(t)
|A + g ∩B|dg

∣∣∣∣∣ 6 |Bδ(t)| ·
√

2∆δ.

Since the random sample points in A and B are uniformly distributed the density functions
are fA(a) = 1

|A| · χA(a) and fB(b) = 1
|B| · χB(b) where χA denotes the indicator function

of A. Because of the independence of the distributions the density function f(−A)⊕B of the
distribution of b− a is the convolution of f(−A) and fB, namely

f(−A)⊕B(y) =
∫

R2

f(−A)(y − s)fB(s)ds.

See for example [19] for a proof. Now the probability of a δ-neighborhood can be determined:

Pr(Bδ(t)) =
∫

Bδ(t)

∫
R2

f(−A)(y − s)fB(s)dsdy

=
∫

Bδ(t)

∫
y−s∈(−A),s∈B

1
| −A| · |B|

dsdy

=
1

|A| · |B|

∫
Bδ(t)

∫
s∈A+y,s∈B

1dsdy

=
1

|A| · |B|

∫
Bδ(t)

|A + y ∩B|dy

For a given set of random translations S = {s1, . . . , sn} consider a random variable X(t)
which is defined as follows

Xi(t) =
{

1 if si ∈ Bδ(t)
0 otherwise

for each i ∈ {1, . . . , n}

X(t) =
n∑

i=1

Xi(t).

Thus X(t) counts the number of votes for the δ-neighborhood of t. Let E(X(t)) denote the
expected value of X(t). Then by linearity of the expected value the following equations hold

E(X(t)) = n · Pr(Bδ(t))

For ε̂ > 0 the Chernoff bound as described in [6] gives

Pr(|E(X(t))
n

− X(t)
n

| > ε̂) < 2e−
ε̂2n
2

and by this and the above the following holds with high probability∣∣∣∣∣
∫

Bδ(t)
|A + g ∩B|dg − |Bδ(t)| · eS(t)

∣∣∣∣∣ = |A| · |B| · |E(X(t))
n

− X(t)
n

| 6 |A| · |B| · ε̂.
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Now we have

|Bδ(t)| · |µ(t)− eS(t)| 6

∣∣∣∣∣|Bδ(t)| · µ(t)−
∫

Bδ(t)
|A + g ∩B|dg

∣∣∣∣∣ +∣∣∣∣∣
∫

Bδ(t)
|A + g ∩B|dg − |Bδ(t)| · eS(t)

∣∣∣∣∣
6 |A| · |B| · ε̂ + 4

√
2∆δ3 with high probability .

Proof. (of Lemma 2.3)
We need to show that the density function f on R equals f(r) = |r(A)∩B|

2π·|A|·|B| . We choose the
random samples uniformly distributed from [0, 2π)×A×B but we are interested in the density
function on R = [0, 2π)× R2 where the R2 is understood as translation space. To determine
the density on R we define probability spaces Ω1 = [0, 2π) and Ω2 = R2. The distribution on
Ω1 is uniform, so the density function f1 is given by f1(α) = 1

2π . The probability distribution
on Ω2 depends on the chosen α ∈ Ω1 and is given by the experiment: if the chosen random
point sample is (α, a, b) we get the rigid motion (α, b−Mαa) ∈ Ω1 ×Ω2. We understand the
probability on Ω2 as conditional probability. To prove the lemma we determine the conditional
density functions f2(α, ·). The density function f is then given by f((α, t)) = f1(α) · f2(α, t)
as is explained in [20].

To determine f2(α, ·) we use the following theorem which is a special case of the general
transformation rule for density funcitons (Theorem A.2) and is proven in [20].

Theorem A.1. Given a probability space Ω, a random variable X : Ω → Rn with density
function f and an affine map h : Rn → Rn, h : x 7→ Mx + t such that det M 6= 0. Then the
random variable h ◦X has the density function g defined by g(y) = f(M−1(y−t))

| det M−1| .

We choose X = idA×B and h : R4 → R4, h(x) = Mx where M =


cos α − sinα 0 0
sin α cos α 0 0
cos α sinα 1 0
− sinα cos α 0 1

.

Obviously the determinant of M is 1 and M−1 =


cos α sinα 0 0
− sinα cos α 0 0

1 0 1 0
0 1 0 1

 . h ◦ X is the

random variable that maps (a, b) onto (Mαa, b−Mαa) and its density function g equals

g(a, y) =
1

|A| · |B|
· χA(M−α(a)) · χB(a + y)

=
1

|A| · |B|
· χMαA(a) · χB−y(a).

We are interested in the probability distribution of b − Mαa on R2 whose density function
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f2(α, ·) is given by

f2(α, t) =
∫

R2

g(a, t)da

=
∫

R2

1
|A| · |B|

· χMαA(a) · χB−y(a)da

=
1

|A| · |B|

∫
R2

χMαA+y∩B(a)da

=
|MαA + y ∩B|

|A| · |B|
.

Proof. (of Lemma 2.4)
Let Ā = A2 \ {(a, a) : a ∈ A} and B̄ = B2 \ {(b, b) : b ∈ B}. We define a map ϕ that is is

differentiable with continuous derivative and bijective by

ϕ : Ā× B̄ → Ā× S ⊆ R8

ϕ : (a, a′, b, b′) 7→ (a, a′,
< a′ − a, b′ − b >

‖a′ − a‖2︸ ︷︷ ︸
=λ cos α

,

det
(

(a′ − a)
(b′ − b)

)
‖a′ − a‖2︸ ︷︷ ︸

=λ sin α

, b− λMαa)

ϕ models the experiment but is defined in a way that it is bijective. The inverse is given by
ϕ−1(a, a′, s) = (a, a′, s(a), s(a′)) where (a, a′) ∈ Ā, s ∈ S. We use the following transformation
rule for density functions written down in [19]

Theorem A.2. Let X : Rn → Rn be a random variable with density function f and ϕ : Rn →
Rn a bijective, differentiable map with continouos derivative. Let ∆(x) = det(∂ϕj

∂xi
)i,j=1,...,n.

The density function g of ϕ ◦X is given by

g(y) =

{
f(ϕ−1(y)
|∆(ϕ−1(y)| if y ∈ ϕ(G)
0 otherwise

where G ⊆ Rn such that Pr(X ∈ G) = 1.

Let X be idR8 with uniform distribution. The density function f is given by f(a, a′, b, b′) =
χA2 (a,a′)·χB2 (b,b′)

|A|2·|B|2 . The determinant of the Jacobi matrix of ϕ is ∆(a, a′, b, b′) = 1
‖a′−a‖2 . The

density function g of ϕ ◦X is

g(a, a′, s) =
‖a′ − a‖2

|A|2 · |B|2
· χA2(a, a′) · χB2(s(a), s(a′))

=
‖a′ − a‖2

|A|2 · |B|2
· χA2(a, a′) · χ(s−1(B))2(a, a′)

=
‖a′ − a‖2

|A|2 · |B|2
· χ(A∩s−1(B))2(a, a′)

Integration gives the density k on S

k(s) =
1

|A|2 · |B|2

∫
(A∩s−1(B))2

‖a′ − a‖2d(a, a′)
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B Examples of trademark images

Figure 5: Query image (top left) and images to retrieve having different proportions.

Figure 6: Query image (left) and images to retrieve having different arrangements.

Figure 7: Query image (top left) and images to retrieve having different gaps.

Figure 8: Query image (left) and images to retrieve having different frames.
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C Experimental results

query size Rn Pn Ln n0.01

1. 26 0.99 0.87 0.93 19

2. 16 0.99 0.87 0.89 13

3. 12 0.96 0.89 0.60 10

4. 10 0.92 0.81 0.34 7

5. 10 0.99 0.72 0.97 4

6. 18 0.94 0.80 0.36 12

7. 11 0.97 0.71 0.89 6

8. 20 0.98 0.86 0.73 16

9. 25 1.00 1.00 1.00 25

10. 11 0.92 0.54 0.76 5

11. 10 1.00 0.91 0.98 8

12. 4 1.00 0.99 1.00 4

13. 16 0.97 0.62 0.89 6

14. 6 0.94 0.70 0.74 4

15. 13 0.99 0.85 0.93 10

16. 13 1.00 0.97 0.99 13

17. 17 0.94 0.66 0.72 9

18. 12 0.97 0.60 0.87 6

19. 21 0.67 0.28 0.11 1

20. 8 0.97 0.79 0.85 6

21. 8 1.00 0.91 0.98 7

22. 10 0.99 0.74 0.91 8

23. 23 0.99 0.87 0.93 20

24. 13 0.97 0.86 0.67 10
mean / sum 333 0.96 0.79 0.79 229

standard deviation 0.07 0.16 0.23

Table 1: Results achieved: 24 query images plus values for recall, precision, last place ranking,
and number of relevant images ranked within the top 1 percent of the entire collection
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