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1 Introduction

In this work package we develop and implement algorithms for matching two planar shapes. We assume
that shapes are modeled by sets of plane simple polygons. Other than in previous work on objectives 3 and
4 the interiors of the polygons are considered as part of the shape, as well, not only their boundaries. As
possible classes of transformations we consider translations, rigid motions (i.e., translations and rotations),
and similarities (i.e., translations, rotations and scalings). The general situation is that we are given two
objects A and B and a set T of allowable transformations and we want to transform B optimally so that
the transformed image of B is as close to A as possible.

Working on Objective 1 we developed two algorithms: One of them is a probabilistic algorithm for match-
ing region shapes under translations, rigid motions and similarities with respect to the area of overlap. The
second algorithm is motivated by the observation that there are shapes that are perceived to be similar by
humans, but for which there is no transformation that maps one shape completely to the other. The idea of
matching based on image primitives is to decompose a shape into primitive components and to find best
matching between the primitives of two shapes. The similarity of primitive components can be computed
using a transformation based algorithm, for example curve based matching described in deliverable D4.3
or region based matching described in deliverable D4.1.

Objective 2 of this work package is implementation of region based algorithms. In this deliverable we pro-
vide a C++ and Java implementation of the shape matching algorithm based on image primitives described
in deliverable D4.1. This report contains API description of the implemented algorithm and reports on
experimental evaluation of the algorithms.

2 Algorithms as described in Deliverable D4.1

2.1 Probabilistic matching

2.1.1 The similarity measure

We want to compare shapes that are regions in the plane. An established similarity measure for regions
is the area of overlap. Two shapes are understood as similar if they overlap much. Psychological studies
show that the area of overlap is an essential factor for perceived similarity [17].

The first row of Figure 1 shows two discs, one of them with noise added. Figures extracted from digital
images often contain noise that should not affect the similarity of the figures. Since noise is expected to
have a very small area, this is not the case if similarity is measured by the area of overlap. So one advantage
of the area of overlap as similarity measure is its insensitivity to noise.

Nevertheless, there are examples where the area of overlap does not quite capture perceived similarity. An
instance is shown in the second row of Figure 1, where the two shapes are perceived as quite different but
the area of overlap is quite large if the blot is moved on top of the star.

The last row of Figure 1 indicates that comparing regions is a different matter than comparing curves. All
common similarity measures for curves would assign a very small distance to the disc and the ring but the
distance measured by area of overlap is very large.

If no scaling is allowed maximizing the area of overlap is the same as minimizing the symmetric difference
which is a metric on the set of all shapes.

2.1.2 The algorithm

Suppose that two regionsA andB in R2 and a set of transformations F are given. We present a randomized
algorithm finding a transformation f ∈ F that approximately maximizes the area of intersection of the
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Figure 1: Some examples for the area of overlap as similarity measure.

transformed shape f(A) and B. We will investigate the cases where the set of transformations F consists
of translations, rigid motions, and similarities. A rigid motion consists of a rotation angle and a translation
vector, a similarity is composed of rotation, translation and scaling.

We define shapes quite generally as Lebesgue measurable sets in R2. Suppose, there are given a fixed,
small δ > 0, two shapes A and B, and a set of transformations F which is identified with a subspace of
some Rk. We examine the following algorithmic scheme:

1. For i = 1, . . . , n choose uniformly distributed a random point sample of suitable size in A and a
random point sample in B.

2. Give one vote to the unique transformation in F that maps the sample from A onto the one from B.

3. Determine and return the transformation whose δ-neighborhood in F obtained the most votes.

Of how many random points one sample consists depends on the selected set of transformations. Size and
form of a sample are chosen in a way that there exists exactly one transformation that maps one sample
onto another sample.

The votes approximate the probability distribution in F resulting from the experiment. The output of the
algorithm is a transformation whose δ-neighborhood in F has approximately highest probability. If δ is
small enough this transformation is one at which the density function of the probability distribution is
maximal.

In the following it is shown that for translations and rigid motions the density function of the probability
distribution in f ∈ F equals the area of overlap of f(A) and B. Thus, the algorithm gives a transformation
that approximately maximizes the area of overlap.

For similarities we do not have an equally simple characterization. Nevertheless, we will derive a formula of
the density function and give an intuitive explanation. Furthermore, it is shown that the induced similarity
measure is not symmetric in case of similarities.
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2.1.3 Translations

In case of translations a random point sample consists of one point in each shape because if we choose a
point a ∈ A and a point b ∈ B, there is exactly one translation that maps a onto b, namely t = b− a. The
transformation space T equals R2 where a point (t1, t2) ∈ T means the translation (x, y) 7→ (x+t1, y+t2).
Note that (−A)⊕B contains exactly those translations that map at least one point of A onto a point of B,
where ⊕ denotes the Minkowski sum.

For a region G ⊂ R2 we denote its area by |G|. For a translation t ∈ T we denote the δ-neighborhood of t
with respect to the maximum norm by Bδ(t).

We are interested in the area of the intersection of A translated by t with the shape B denoted by

µ(t) = |(A+ t) ∩B|.

Let S be a set of n translations resulting from the experiment. The number of votes for the δ-neighborhood
of t is given by |S ∩ Bδ(t)|. Our estimate of the probability that a translation resulting from one random
experiment lies in the δ-neighbourhood of t is the ratio of the number of votes for the δ-neighborhood of t
to the number of all votes, namely |S∩Bδ(t)||S| . We need to normalize this value with the sizes of the shapes
and the size of the neighborhood of t to get an estimate eS(t) of µ(t):

eS(t) =
|S ∩Bδ(t)| · |A| · |B|
|S| · |Bδ(t)|

.

It can be shown that the error of the estimate becomes small if n is large enough. More precisely, it can be
shown that for each ε > 0, p < 1 and each δ > 0 there is a n ∈ N such that the error |µ(t)− eS(t)| is less
then ε with probability at least p. We achieve this by proving the following lemma:

Lemma 2.1. For all shapes A and B, δ > 0 and t ∈ T with probability at least 1− 2e−
ε2·n

2 it holds

|µ(t)− eS(t)| 6 |A| · |B| · ε
4δ2

+
√

2∆δ

where ∆ denotes the maximum of the lengths of the boundaries of A and B.

From this lemma it follows that in case of translations the algorithm returns a translation that approximately
maximizes the area of overlap of a translated copy of A with the shape B for all shapes A and B. More
formally: Let t∗ be the map that maximizes the estimate eS(t) and let topt be an optimal solution. If the
approximation error |µ(t)− eS(t)| is less than ε then the difference between approximation and optimum
is at most 2ε:

µ(t∗) > eS(t∗)− ε > eS(topt)− ε > µ(topt)− 2ε.

2.1.3.1 A bound for the required number of random samples in case of translations. For transla-
tions we can deduce a concrete bound for the required number of random samples from Lemma 2.1.

Corollary 2.2. Let ε̃ > 0 and p ∈ [0, 1]. Let t∗ be the map that maximizes the estimate eS(t) and let topt

be an optimal solution. If

n >
|A|2|B|2(− log( 1−p

2 ))

8δ4(|B|ε̃−
√

2∆δ)2

the approximation error |µ(topt) − eS(t∗)| is less than 2ε̃ with probability at least 1 − p. The bound is

minimal for δ =
√

2|B|ε̃
3∆ .

The theoretical bound for n seems to be quite pessimistic. Our test implementation shows that the real con-
vergence is much faster than the bound indicates. In fact, the results that our preliminary implementation
shows for translations are very promising.
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2.1.4 Rigid Motions

The space of rigid motions is given byR = [0, 2π)×T ⊆ R3 the first coordinate defining the anti-clockwise
rotation angle. A point (α, (t1, t2)) ∈ R denotes the map defined by (x, y) 7→Mα

(
x
y

)
+
(
t1
t2

)
.

Observe that there exists exactly one translation that maps a point p ∈ A onto a point q ∈ B while there
exist infinitely many rigid motions that map p onto q. To be more precise, for each α ∈ [0, 2π) there is
exactly one rigid motion whose anti-clockwise rotation angle is given by α and that maps p onto q. This

rigid motion is given by r = (α, q −Mαp) where Mα is the rotation matrix
(

cosα sinα
− sinα cosα

)
.

If we choose two random points p and p′ in A and two random points q and q′ in B there is exactly one
similarity that maps p onto q and p′ onto q′. (To determine one affine transformation we need 3 points
from each shape.) If we want to determine exactly one rigid motion there is no size of the random sample
that works. Therefore we pick uniformly distributed a random angle α in [0, 2π), one point a in A and one
point b in B. We give one vote to the unique rigid motion with anti-clockwise rotation angle α that maps a
onto b.

If we do this experiment very often we get an approximation of a probability distribution on R. The al-
gorithm returns a rigid motion whose δ-neighborhood in R got the most votes and thus has approximately
highest probability. If δ is small enough the rigid motion whose δ-neighborhood in R has highest proba-
bility is the rigid motion at which the density function of the probability distribution is maximal.

Lemma 2.3. The density function on R is given by f(r) = |r(A)∩B|
2π·|A|·|B| .

Because of this lemma as in case of translations it holds that also in case of rigid motions the output of the
algorithm is a rigid motion that approximately maximizes the area of overlap. For matching under rigid
motions we can derive similar approximation error bounds as in the case of translations.

2.1.5 Similarities

For matching under similarities, our experiment consists of choosing two random points a and a′ in A
and two random points b and b′ in B. Then there is exactly one similarity that maps a onto b and a′ onto
b′. We parameterize the space of similarities S ⊆ R4 in the following way: (s1, s2, s3, s4) ∈ S denotes

the similarity
(
x
y

)
7→
(

s1 s2

−s2 s1

)(
x
y

)
+
(
s3
s4

)
, so s1 is the product of scaling factor and cosine of the

anti-clockwise rotation angle, s2 is the product of scaling factor and sine of the rotation angle and
(
s3
s4

)
is

the translation vector. Having chosen a, a′, b, b′ the scaling factor λ is given by ‖b
′−b‖

‖a′−a‖ , the cosine of the

rotation angle α is <a′−a,b′−b>
‖a′−a‖·‖b′−b‖ , the sine is

det ((a′−a)
(b′−b))

‖a′−a‖·‖b′−b‖ (where (a′ − a) and (b′ − b) are written as row
vectors) and the translation vector is given by b − λMαa. The following formula for the density function
on S can be shown:

Lemma 2.4. The density function f of the probability distribution resulting from the experiment on S is
given by

f(s) =
1

|A|2 · |B|2

∫
(A∩s−1(B))2

‖a′ − a‖2d(a′, a).

Intuitively, the density function is large and thus the probability of a small neighborhood is large as well if
essential parts ofA have a large distance from each other. The density function is large ifA has a elongated
shape in contrast to a circular shape.

Since for all a, a′ ∈ C the squared distance ‖a′ − a‖2 is less than the squared diameter diam(C)2 the
following holds
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Proposition 2.5. For shapes A,B ⊆ R2 and a similarity s ∈ S it holds

f(s) 6
diam(A ∩ s−1(B))2 · |A ∩ s−1(B)|2

|A|2 · |B|2
.

For similarities the algorithm is not symmetric as the example in Figure 2 shows. If A is a dumbbell and
B is a disc the algorithm returns a similarity that shrinks A into B because the density is maximal for this
similarity. If A is a disc and B is a dumbbell the two similarities with highest density are the translations
that put A on top of one of the discs of the dumbbell.

Figure 2: Matching A with B under similarities gives a different result than matching B with A.

2.2 Matching based on Image Primitives

2.2.1 Motivation

For the comparison of figurative images represented by sets of (polygonal) curves we developed algorithms
(objective 3) that were based on finding similarity transformations that match the two images. This works
well for images whose parts lie close together and whose parts do not differ much in perceived significance.

Although one of the laws invented by gestalt theory states that configurations cannot be analyzed into parts
and relations [11], for multi-component images the comparison based on the individual image components
is more effective than a comparison based on the whole image [8].

With regard to the ground truth provided by professional trademark examiners, some observations can be
made which are formulated as follows:

• People look for figures in the image that can easily be memorized. These figures may be abstract
figures such as squares, circles, and triangles or figures of everyday life such as letters, digits, and
stylized eyes or paperclips. If such figures exist within the image, their concrete proportions and
positions play a minor role.
This is supported by the facts that:

– a small number of common shape elements can form a basis for humans to discriminate be-
tween a wide variety of images [6] (cited in [9]).

– "there is an unconscious effort to simplify what is perceived into what the viewer can under-
stand". [10] (cited in [4])

• If the image consists of spatially independent parts, the size of the gaps in between plays a minor
role.

• If an essential part of the image is framed, the shape of the frame and even the existence of the frame
play a minor role. In [13] experiments on the way humans decompose figurative images were made.
5 of the images had a frame, for 3 of them all subjects completely ignored the frame and for 1 image
only the second least significant decomposition (out of 9) contained the frame.
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• Looking at a figurative image, the number of essential parts that are perceived is typically very
small. For example in a regular pattern of little circles, one does normally not discriminate between
the different circles, but group them together to a ’pattern of circles’. Moreover when comparing
such patterns it plays only a minor role whether 16 circles form a 4 × 4 grid or whether 25 circles
form a 5× 5 grid.

Our approach for comparison of figurative images is based on a very simple idea: try to characterize a
figurative image the same way humans would do. If there is a circle in a triangle, characterize it as ‘a circle
in a triangle’, if there is something never seen before, characterize it as ‘something never seen before’
and describe it by what is known about it — in our case the region as given by the bounding polygonal
curve. Many patent offices use such a characterization based on the so called Vienna classification [1]. The

Figure 3: actual trademark images — some easy to describe by geometric primitives and some not.

codes for the examples given in fig. 3 would possibly be ‘26.3.10 Triangles containing one or more circles,
ellipses or polygons’ and ‘26.13.25 Other geometrical figures, indefinable designs’ respectively.

Following this idea in our approach, an image is divided into a set of (not necessarily spatially independent)
parts — preferably simple and salient geometric figures. These parts are classified, weighted, and related.
The relationships are weighted as well. Comparing two images is accomplished by searching for subsets
of the parts and their relations that match well.
The comparison of the parts is done independently, leaving aside their relative sizes and positions. It can
be done using a similarity measure that works well for shapes whose parts lie close together whereas the
resulting measure can handle arbitrarily composed shapes.
In [14] a similar approach of dividing the images into geometric primitives and finding a match between
these primitives is proposed. Its main drawbacks are 1.) that the comparison of the primitives does
not discard their concrete positions and 2.) that the similarity between primitives belonging to different
categories is defined as being zero, which is contrary to human perception e.g. when comparing a circle
and a regular 12-gon.

2.2.2 Technique

It is assumed that figurative images are given as a set S of polygonal regions s1 . . . sm. Based on these
polygonal regions a set P of figures p1 . . . pn is extracted and “ relations” R = r1,2 . . . rn,n−1 among them
are computed.
The process of figure detection is not described in detail here, but the decomposition is assumed to be part
of the input.

Figures The figures can either be simple geometric objects (image primitives) or more complex objects.
The primitives considered in our implementation are:

• ellipses (as a generalization of circles)

• rectangles (as a generalization of squares)
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• triangles

The parts of the image that cannot be represented by these primitives are categorized as

• convex polygons

• arbitrary sets of polygons and polylines

Analogously to concentric circles, ‘concentric’ ellipses, rectangles, triangles, and convex polygons are
combined to a single figure with multiple layers.

Relations For a pair (pi, pj) ∈ P × P, i 6= j of figures the relation ri,j consists of numerical values
reflecting

• the size of pj relative to the size of pi (The size of a figure is defined to be the perimeter of the
bounding box that maximizes the aspect ratio.)

• the relative distance of pj to pi (The distance of the centers relative to the size of pi.)

• the qualitative relation, i.e., whether pi and pj are very similar, just mirrored, or just rotated etc.

Comparison of two images For the comparison of two images I1 and I2 the relevance wP of the figures
and the relevance wR of the relations is preset such that wP + wR = 1 — for images consisting only of
one type of figures, e.g., only squares, the relations between these figures are of greater importance than
for images consisting of totally different figures. The figures and relations get weights w(pi) and w(ri,j)
such that for each image all weights sum up to 1, namely:

∑
p∈P w(p) = wP and

∑
r∈R w(r) = wR.

For every pair (p1
i , p

2
k) ∈ P 1 × P 2 of figures and every pair (r1

i,j , r
2
k,l) ∈ R1 × R2 of relations a value of

similarity s ∈ [0, 1] is computed, using simple measures of similarity as described later.

Let M be the set of all one-to-one matchings between figures of image I1 and image I2. The value of
similarity of the two images is then defined as the weighted sum of the similarities of the matched figures,
plus the weighted sum of the similarities of the (implicitly) matched relations:

s(I1, I2) = max
M∈M

{ ∑
(p1,p2)∈M

s(p1, p2) · w(p1) + w(p2)
2

+

∑
(p1i ,p

2
k)∈M

(p1j ,p
2
l )∈M

s(r1
i,j , r

2
k,l) ·

w(r1
i,j) + w(r2

k,l)
2

}

The problem of determining whether s(I1, I2) ≥ θ for a given threshold 0 < θ ≤ 1 is an extension of the
quadratic assignment problem (see e.g. [16]) and therefore is NP-complete1. Since the number of essential
parts that are perceived is typically very small, the admissible number of figures that represent an image
can be bounded by a small constant. Thus, the value of similarity s(I1, I2) may even be computed using
methods having a high asymptotic runtime which would not be acceptable in a different context:

1. using a weighted association graph G1,2 = (V,E).
The vertex set V = P 1 × P 2 ∪ R1 × R2 consists of all possible pairs of figures of I1 and I2 and
of all pairs of relations of I1 and I2. The weight w(v1, v2) of a vertex v = (v1, v2) is the product
of the similarity and the arithmetic mean of the weights of the two figures or relations respectively:

1The NP-completeness can easily be seen by reduction of the problem whether a graph contains a Hamiltonian cycle.
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w(v1, v2) = s(v1, v2) · 0.5 ·
[
w(v1) + w(v2)

]
Between any two vertices v1, v2 an edge is inserted into the graph G1,2, if and only if choosing the
two underlying pairs would lead to a contradiction (e.g. if a figure p1

a of I1 is matched to a figure p2
b

of I2 it cannot be matched to a figure p2
c at the same time).

The value s(I1, I2) equals the weight of the maximum (weight) independent set of vertices in G1,2

which can be approximated using the greedy algorithm described in [15].

2. using a branch and bound algorithm for enumeration of the promising matches.

Weights Every figure pi gets an absolute weight wa(pi) which equals the square root of the figure’s
size (perimeter of the figure’s bounding box that maximizes the aspect ratio). Every relation ri,j gets an
absolute weight wa(ri,j) based on the weights of the figures pi and pj . Before the comparison the weights
are normalized such that

∑
w(p) = wP and

∑
w(r) = wR. If we compare two images I1 and I2 with

different numbers n1, n2 of figures, then, of course, we can match at most as many figures as the smaller
of two images has. Therefore, only the relations for nmin = min(n1, n2) figures may be selected in the
matching. In this case, the weights of the relations of the image consisting of more figures are adjusted,
such that the maximum over all nmin-subsets of the figures of the sum of the relation weights between the
figures in a subset equals wR.

Frames For every figure the likeliness of being a frame is rated based on the following propositions:

• frames are convex and symmetric

• frames contain at least one complex figure or two primitive figures

• frames are not too small compared with surrounding frames

• frames are not surrounded by something that is not a frame

Based on this likeliness the weight of a frame figure is decreased by a factor ∈ [1.0, 2.0].

Repetitions If a logo contains groups of identical figures, the concrete number of these identical figures
plays only a minor role in comparison and some trademark images even contain miscellaneous variants of
the actual logo. Therefore the weights of such copies are reduced.

Underlying measures of similarity For the underlying measures of similarity between figures or rela-
tions respectively, values between 0 and 1 are required so that the resulting value will range from 0 to 1.
In [2] such a normalized measure of similarity is described which works respectably well for figurative
images whose parts lie close together. The basic idea behind this approach is to find a (similarity) trans-
formation t : R2 → R2 that maps parts of the one figure p1 into the proximity of corresponding parts of
the other figure p2 and the similarity is rated based on proximity and parallelism of t(p1) and p2. For the
comparison of image primitives (ellipses, rectangles, triangles) the values of similarity may be predefined,
for the comparison of primitives with complex figures the values may be precomputed so that only the
values for the comparison of complex figures have to be computed online.
The similarity of two relations r1

i,j and r2
k,l is computed by a formula based on the difference in relative dis-

tances, the difference in relative sizes, and the qualitative relations i.e. whether pi and pj are very similar,
just mirrored, or just rotated etc.
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Dealing with different representations Whenever such a measure of similarity depends on the way the
images are decomposed, there is the risk of underestimating the similarity just because two images get
decomposed in different ways (e.g. two triangles forming a square vs. a square plus its diagonal). To
diminish that effect, the images are also compared using the simple similarity measure that is used for the
figures. The maximum of the two values is taken as the similarity of the images.

3 Results

The similarity evaluation is based on a preprocessed description of the shapes in the images. This pre-
processing may directly use the shapes as given by the segmentation (as is desired with the high level
York-segmentation) or it may rearrange and group the shapes given by the segmentation (as is necessary
with the low level FU-segmentation).

3.1 Implementation

The Algorithms for the comparison based on image primitives as described in deliverable D4.1 have been
implemented in C++ as well as in Java. Input and output is via filesystem. In addition to the similarity
based on image primitives the curve based similarity is also computed (it yields better results than region
based similarity – see section 3.2).

Java The Java archive Comparator.jar contains a stand alone application that allows using the algorithms
via a command-line interface. It offers the following options:

segment <inputFile> <outputFile> For performing a low level segmentation of an image (png/gif) and
storing the closed polygonal chains of the shapes.

prepare-fu <inputFile> <outputFile> For reading in segmented shapes from an xml-file and generating
the image description with rearrangement and grouping of polylines.

prepare-york <inputFile> <outputFile> For reading in segmented shapes from an xml-file and generat-
ing the image description without rearrangement and grouping of polylines.

segmentandprepare <inputFile> <outputFile> For performing a low level segmentation of an image
(png/gif) and generating the image description with rearrangement and grouping of polylines. The
result of a call
segmentandprepare <inputFile> <outputFile> equals the two consecutive calls
segment <inputFile> <intermediateFile> and
prepare-fu <intermediateFile> <outputFile>.

compare <file1> <file2> <outputFile> [<ccm>] [<cpm>] [<ppm>] For comparing two image descrip-
tions. The optional parameters ’ccm’, ’cpm’, ’ppm’ specify whether a complete-complete-matching
(ccm), whether a complete-partial-matching (cpm), and whether a partial-partial-matching is to be
computed. They may be true, false or 1, 0 respectively. The default is true true false.

C++ The C++ library libshapemlib.so contains the algorithms for comparing shapes and images. Via the
class FigurativeMatcher it provides direct access to the comparison methods to other applications.

static void setSeed(int seed) To have reproducible behavior of the probabilistic parts of the algorithms,
the pseudo-randon-generator may be seeded.

static void compare(char* inputFile1, char* inputFile2, char* outputFile, ...) To compare two images
based on their descriptions.



3.2 Experiments 11

static bool validate(char* inputFile, char* dtd) To check the validity of an image description file. The
input file is checked regarding the validity of the xml format according to the given dtd, and regarding
the consistency of the data. This part is separated from the comparison of images to have the possi-
bility of having collections of valid files that can be compared without extra costs of re-checking.

3.2 Experiments

To get comparable results, the retrieval performance of the present implementations as well as of prelimi-
nary implementations of additional algorithms were tested with the same set of trademark images and the
same 24 reference queries that were used to test the ARTISAN system [7].

For a query all images were compared to the query images and ranked according to the computed value of
similarity. These rankings were rated based on the following evaluation indicators as defined in [7, 3]:
Let N be the total number of items and n be the number of relevant items. Let furthermore ri be the rank
of the i th-best-ranked relevant item and rl the rank of the least-best-ranked relevant item.

Normalized Recall Rn Value in the range from 0 (worst case) to 1 (perfect retrieval). The normalized
recall gives a higher weight to success in retrieving the first few items.

Rn = 1−
∑n
i=1 ri −

∑n
i=1 i

n(N − n)

Normalized Precision Pn Value in the range from 0 (worst case) to 1 (perfect retrieval). The normalized
precision gives equal weight to all retrievals.

Pn = 1−
∑n
i=1 log(ri)−

∑n
i=1 log(i)

log
(

N !
(N−n)!·n!

)
Normalized Last-Place-Ranking Ln Value in the range from 0 (worst case) to 1 (perfect retrieval). The

normalized last-place-ranking indicates the number of retrieved items a user has to search in order to
have reasonable expectation of finding all relevant items.

Ln = 1− rl − n
N − n

Average Precision Pa Value in the range from 0 (worst case) to 1 (perfect retrieval). The average precision
is the mean of the precision scores obtained after each relevant item is retrieved.

Pa =
1
n

n∑
i=1

i

ri

Number of Retrieved Images n0.01 The number of relevant images ranked within the top 1 percent of the
entire collection.

3.2.1 Probabilistic Region-based Shape Matching

We used a preliminary version of the implementation for the experiments, which is written in Java. The
algorithm works on the black-and-white pixel images. No satisfactory segmentation of the images is avail-
able, but fortunately, none is required for this algorithm.

We compared each of the 24 query images to each of the 10745 trademark images. First, a transformation
that matches the query image best to the other input image is computed by our algorithm. Second, a
certain distance value of the transformed query image and the other image is measured. These distance
values determine the ranking of the images. The distance value is chosen as the number of pixels of the
transformed query images that differ from the other input image. This value is kind of similar to the
symmetric difference of the two shapes, which cannot be computed from the pixel images easily.



3.2 Experiments 12

Matching under translations For reader’s convenience, we summarize the algorithm briefly.
Algorithm 1
Given: shapes A and B, integer n, positive rational δ.

1. Do the following experiment n times:

(a) Choose uniformly distributed a random point a in A and a random point b in B.

(b) Give one vote to the unique translation that maps a onto b that is b− a.

2. Determine and return one of the transformations whose δ-neighborhood obtained the most votes.

Our analysis shows that this algorithm computes with high probability a translation that approximately
maximizes the area of overlap of the input shapes if n is large enough.

During the comparison of two images random experiments are performed. The number of experiments was
set to 100,000.

From the theoretical point of view matching under translations is not appropriate to solve the general
trademark retrieval task because of its obvious flaw that a shape and its scaled copy are not recognized to
be the same. The achieved values are:

Normalized Recall Rn: 0.69 on average

Normalized Precision Pn: 0.41 on average

Normalized Last-Place-Ranking Ln: 0.24 on average

Average Precision Pa: 0.22 on average

Number of Retrieved Images n0.01: 95 in total

The detailed results can be seen in table 1.

Matching under similarities The number of experiments was set to 1,000,000. Unfortunately, the results
were worse than for translations.

Conclusion In general, region-based shape matching is not well suited for trademark retrieval because
the area of overlap reflects perceived similarity not well enough. There are some issues that cannot be
solved with this approach in principle. Two examples are shown below.

Inverted images Inverted images are perceived as similar in some cases, but there is no overlap between
the shapes if one is put exactly onto the other. So region-based methods fail to detect similarity in
these cases.

Different spacing Affine transformations are not capable of mapping shapes with different spacing onto
each other.
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3.2.2 Probabilistic Curve-based Shape Matching

The preliminary experiments were performed based on a naive segmentation: Every boundary (not pro-
cessed so far) between a white and a black pixel was followed to form a closed contour. These closed
contours were clustered. Negligibly small clusters were classified as noise and the closed contours were
deleted. Clusters with a sufficiently large expanse and a sufficiently large number of contained contours
were classified as texture. The closed contours in these clusters were replaced by the boundary of the clus-
ters. The remaining closed contours for which every vertex corresponds to a pixel, were then simplified
using the Douglas-Peucker algorithm [5] (cited in [12]).

The achieved values are:

Normalized Recall Rn: 0.93 on average

Normalized Precision Pn: 0.71 on average

Normalized Last-Place-Ranking Ln: 0.68 on average

Average Precision Pa: 0.47 on average

Number of Retrieved Images n0.01: 191 in total

The detailed results can be seen in table 2.

3.2.3 Figure-based Shape Matching

The preliminary experiments were performed based on a naive segmentation: Every boundary (not pro-
cessed so far) between a white and a black pixel was followed to form a closed contour. These closed
contours were clustered. Negligibly small clusters were classified as noise and the closed contours were
deleted. Clusters with a sufficiently large expanse and a sufficiently large number of contained contours
were classified as texture. The closed contours in these clusters were replaced by the boundary of the clus-
ters. The remaining closed contours for which every vertex corresponds to a pixel, were then simplified
using the Douglas-Peucker algorithm [5] (cited in [12]).

The achieved values are:

Normalized Recall Rn: 0.96 on average

Normalized Precision Pn: 0.79 on average

Normalized Last-Place-Ranking Ln: 0.78 on average

Average Precision Pa: 0.54 on average

Number of Retrieved Images n0.01: 230 in total

The detailed results can be seen in table 3.

4 Deviations from plan

There were no deviations from plan.
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A Experimental Results

Table 1: Probabilistic Region-based Matching (Translations) – 24 query images plus values for normalized
recall, normalized precision, normalized last place ranking, average precision, and number of relevant
images ranked within the top 1 percent of the entire collection

query relevant Rn Pn Ln aP n0.01

images

1. 26 0.95 0.71 0.75 0.4 13

2. 16 0.74 0.67 0.06 0.54 10

3. 12 0.58 0.35 0.19 0.25 3

4. 10 0.73 0.73 0.06 0.7 7

5. 10 0.94 0.60 0.80 0.29 4

6. 18 0.53 0.27 0.11 0.08 4

7. 11 0.59 0.28 0.04 0.1 2

8. 20 0.59 0.42 0.01 0.3 6

9. 25 0.83 0.57 0.27 0.26 12

10. 11 0.61 0.23 0.08 0.09 1

11. 10 0.76 0.45 0.26 0.3 3

12. 4 0.95 0.53 0.84 0.03 2

13. 16 0.77 0.35 0.23 0.13 2

14. 6 0.55 0.29 0.22 0.17 1

15. 13 0.72 0.49 0.03 0.39 5

16. 13 0.31 0.14 0.00 0.08 1

17. 17 0.55 0.20 0.03 0.06 1

18. 12 0.52 0.21 0.03 0.08 1

19. 21 0.71 0.28 0.04 0.05 1

20. 8 0.58 0.28 0.04 0.13 1

21. 8 0.72 0.38 0.07 0.13 1

22. 10 0.81 0.33 0.63 0.1 1

23. 23 0.56 0.23 0.06 0.01 2

24. 13 0.98 0.88 0.83 0.68 11
mean / sum 333 0.69 0.41 0.24 0.22 95
standard deviation 0.17 0.20 0.29 0.20
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Table 2: Curve-Based Matching – 24 query images plus values for normalized recall, normalized precision,
normalized last place ranking, average precision, and number of relevant images ranked within the top 1
percent of the entire collection

query relevant Rn Pn Ln aP n0.01

images

1. 26 0.97 0.84 0.83 0.69 19

2. 16 0.94 0.86 0.52 0.69 13

3. 12 0.92 0.71 0.66 0.56 7

4. 10 0.97 0.83 0.73 0.71 7

5. 10 0.94 0.60 0.83 0.31 4

6. 18 0.95 0.91 0.45 0.85 16

7. 11 0.97 0.68 0.84 0.32 5

8. 20 0.95 0.71 0.57 0.36 9

9. 25 1.00 0.99 1.00 0.96 25

10. 11 0.99 0.68 0.95 0.16 8

11. 10 0.99 0.88 0.95 0.68 9

12. 4 1.00 0.92 0.99 0.77 4

13. 16 0.89 0.48 0.55 0.16 3

14. 6 0.90 0.52 0.82 0.34 2

15. 13 0.94 0.72 0.64 0.46 8

16. 13 0.97 0.78 0.87 0.54 9

17. 17 0.89 0.50 0.57 0.13 4

18. 12 0.96 0.54 0.91 0.11 4

19. 21 0.57 0.22 0.08 0.05 1

20. 8 0.92 0.69 0.43 0.32 4

21. 8 0.95 0.70 0.84 0.51 4

22. 10 0.94 0.63 0.59 0.31 3

23. 23 0.95 0.78 0.15 0.46 13

24. 13 0.94 0.85 0.51 0.77 10
mean / sum 333 0.93 0.71 0.68 0.47 191
standard deviation 0.08 0.18 0.25 0.26
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Table 3: Figure-Based Matching – 24 query images plus values for normalized recall, normalized precision,
normalized last place ranking, average precision, and number of relevant images ranked within the top 1
percent of the entire collection

query relevant Rn Pn Ln aP n0.01

images

1. 26 0.98 0.86 0.92 0.67 19

2. 16 0.99 0.88 0.90 0.62 13

3. 12 0.97 0.89 0.62 0.81 10

4. 10 0.93 0.81 0.42 0.70 7

5. 10 0.99 0.68 0.97 0.32 3

6. 18 0.94 0.81 0.34 0.55 10

7. 11 0.97 0.71 0.87 0.43 6

8. 20 0.98 0.85 0.75 0.56 16

9. 25 1.00 1.00 1.00 0.98 25

10. 11 0.93 0.58 0.76 0.16 5

11. 10 1.00 0.91 0.98 0.73 8

12. 4 1.00 0.99 1.00 0.95 4

13. 16 0.96 0.62 0.65 0.13 7

14. 6 0.95 0.75 0.70 0.43 4

15. 13 0.99 0.87 0.87 0.66 11

16. 13 1.00 0.98 0.99 0.90 13

17. 17 0.92 0.59 0.71 0.27 7

18. 12 0.97 0.61 0.85 0.13 7

19. 21 0.68 0.30 0.12 0.05 1

20. 8 0.97 0.80 0.84 0.52 6

21. 8 1.00 0.91 0.98 0.70 7

22. 10 0.99 0.74 0.91 0.34 8

23. 23 0.99 0.88 0.94 0.57 20

24. 13 0.95 0.86 0.54 0.77 10
mean / sum 333 0.96 0.79 0.78 0.54 230
standard deviation 0.06 0.16 0.23 0.27
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B API – Matching

B.1 FigurativeMatcher Class Reference

#include <figurative_matcher.h>

B.1.1 Detailed Description

This class implements the matching based on image primitives as described in deliverable D4.1 section 2.2.

Public Member Functions

• void setPartial (bool partial)
• void setImages (FigurativeImage ∗f1, FigurativeImage ∗f2)
• void clear ()
• void run ()
• void run (bool ccm, bool cpm, bool ppm)
• void getFigureSimilarities (vector< vector< double > > &fSims, vector< Figure ∗ > &thisFig-

ures, vector< Figure ∗ > &otherFigures)
• void getRelationSimilarities (vector< vector< double > > &rSims, vector< Figure ∗ > &thisFig-

ures, vector< Figure ∗ > &otherFigures)
• double getBestWeight () const
• const Result & result () const
• void writeResults (const char ∗fileName=NULL)

Static Public Member Functions

• static void setSeed (int seed)
• static void compare (char ∗inputFile1, char ∗inputFile2, char ∗outputFile, bool ccm=true, bool

cpm=true, bool ppm=false)
• static bool validate (char ∗inputFile, char ∗dtd)

Protected Types

• enum { COMPLETE, PARTIAL }

Classes

• class Result
This class reprsents a matching result.

B.1.2 Member Function Documentation

B.1.2.1 static void FigurativeMatcher::setSeed (int seed) [inline, static]

To have reproducible behaviour of the probabilistic parts of the algorithms, the pseudo-randon-generator
may be seeded.
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Parameters:

seed The seed for seeding.

B.1.2.2 void FigurativeMatcher::compare (char ∗ inputFile1, char ∗ inputFile2, char ∗ outputFile,
bool ccm = true, bool cpm = true, bool ppm = false) [static]

Compares two FigurativeImages.

Input is read from file system, output is written to file system. If any one of the input files do not exist, no
output is written. If any one of the input files is corrupted, the hehaviour is unspecified.

Parameters:

inputFile1 Pathname of first image description

inputFile2 Pathname of second image description

outputFile Pathname of result

ccm Whether complete-complete comparison shall be performed

cpm Whether complete-partial comparison shall be performed

ppm Whether partial-partial comparison shall be performed

B.1.2.3 bool FigurativeMatcher::validate (char ∗ inputFile, char ∗ dtd) [static]

Checks the validity of an input file.

The input file is checked regarding the validity of the xml format according to the given dtd, and regarding
the consistency of the data. Input is read from file system, dtd is read from file system. The dtd has to
comply with the present program version.

Parameters:

inputFile Pathname of image description

dtd Pathname of dtd

Returns:

true if input file is a valid image description, false otherwise

B.1.2.4 void FigurativeMatcher::setPartial (bool partial) [inline]

Indicates whether partial or complete matching is to be performed.

Parameters:

partial If set true partial matching is performed.

B.1.2.5 void FigurativeMatcher::setImages (FigurativeImage ∗ f1, FigurativeImage ∗ f2)

Assings the images that are to be compared by the algorithm.

Images have to be of type FigurativeImage, that is, they have to be already decomposed into set of primi-
tives, e.g., by using Figurator class for a PolygonalShape.
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B.1.2.6 void FigurativeMatcher::clear () [inline]

Resets the matching result if one has already been computed.

B.1.2.7 void FigurativeMatcher::run ()

Performs matching based on image primitives for the images assigned by setImages.

Additionally images are matched using probabilistic alingment algorithm. Matching results of both meth-
ods are recorded in a Result object and can be accessed through the result() function or written to a file by
writeResult() function.

B.1.2.8 double FigurativeMatcher::getBestWeight () const [inline]

Returns the best similarity value found by the matching algorithms.

B.1.2.9 const Result& FigurativeMatcher::result () const [inline]

Returns Result object which contains full matching information.

B.1.2.10 void FigurativeMatcher::writeResults (const char ∗ fileName = NULL)

Writes matching results to a file.

The information contains similarity values and matching assingments of the figures of both images for
matching based on image primitives, and again similarity value, transformation that leads to the best simi-
larity and the parts matched by that transformation for probabilistic matching.

Parameters:

fileName Name of the file for writing matching results, if omitted the name is constructed from file
names of the images.

B.2 FigurativeMatcher::Result Class Reference

#include <figurative_matcher.h>

B.2.1 Detailed Description

This class reprsents a matching result.

It contains the similarity values computed by figurative matching algorithms and by probabilistic alingment
algorithm. Additionally, it stores the following information:

• file names of the image files,

• matching assingment of the figures of two images that leads to the best similarity value for the
figurative matching,

• transformation that gives the best matchig results for probabilistic alingment algorithm,

• information about the parts of two images matched by that transformation.
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Public Member Functions

• double weight () const
• void print () const
• vector< pair< int, int > > getMatching () const
• bool hasInfo () const

Friends

• class FigurativeMatcher

B.2.2 Member Function Documentation

B.2.2.1 double FigurativeMatcher::Result::weight () const [inline]

Returns the best similarity value of those computed by figurative matching and probabilistic alingment
algorithms.

B.2.2.2 void FigurativeMatcher::Result::print () const

Prints matching results to standard output device.

B.2.2.3 vector<pair<int, int>> FigurativeMatcher::Result::getMatching () const [inline]

Returns assingments of the figures of two images that gives the best similarity value.

Returns:

Vector containing the pairs of integer values in the vector are indices of the figures that are assigned to
each other by the best matching.

B.2.2.4 bool FigurativeMatcher::Result::hasInfo () const [inline]

Indicates whether the results of matching are computed.

C API – Image representation as set of primitives

C.1 FigurativeImage Class Reference

#include <figurative_image.h>

C.1.1 Detailed Description

Image representation as a set of primitives of type Figure, with all intern relations between the primitives,
represented by FigureRelation.
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Public Member Functions

• void clear ()
• bool isEmpty () const
• int size () const
• bool hasFrames (double frameThreshold) const
• void getFigures (vector< Figure ∗ > &ret, int start, int end)
• PolygonalShape ∗ createShapeRep (double frameThreshold=1.0)
• Figure ∗ getFigure (unsigned int index)
• FigureRelation ∗ getFigureRelation (unsigned int index)
• PolygonalShape ∗ getOriginalShape () const
• void normalizeWeights (unsigned int k)
• const string & name () const

Static Public Member Functions

• static FigurativeImage ∗ readFromXML (char ∗fileName)

Public Attributes

• string m_name

C.1.2 Member Function Documentation

C.1.2.1 void FigurativeImage::clear () [inline]

Clear all data the object holds.

C.1.2.2 bool FigurativeImage::isEmpty () const [inline]

Indicates whether the object contains any figures.

C.1.2.3 int FigurativeImage::size () const [inline]

Returns the number of Figures the image consists of.

C.1.2.4 bool FigurativeImage::hasFrames (double frameThreshold) const

Indicates whether the image contains any figures classified as frames.

Parameters:

frameThreshold Certainty threshold for classifying frames. Figures that were rated as frames with
certainty at least frameThreshold will be marked as such.

C.1.2.5 FigurativeImage ∗ FigurativeImage::readFromXML (char ∗ fileName) [static]

Read a FigurativeImage from an XML-File.
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C.1.2.6 PolygonalShape ∗ FigurativeImage::createShapeRep (double frameThreshold = 1.0)

Returns a PolygonalShape to be drawn on the screen that represents the outline of the Image.

If a threshold for the likeliness of a figure to be a frame is given, these figures will be excluded in the
returned shape.

C.1.2.7 Figure∗ FigurativeImage::getFigure (unsigned int index) [inline]

Returns a pointer to the Figure specified by the index in the vector of Figures.

C.1.2.8 FigureRelation∗ FigurativeImage::getFigureRelation (unsigned int index) [inline]

Returns a pointer to the FigureRelation specified by the index in the vector of FigureRelations.

C.1.2.9 PolygonalShape∗ FigurativeImage::getOriginalShape () const [inline]

Returns a copy of the original shape.

C.1.2.10 void FigurativeImage::normalizeWeights (unsigned int k)

Normalizes the figure and relation weights according to the number of figures of the other image.

Parameters:

k number of figures of the other image

C.1.2.11 const string& FigurativeImage::name () const [inline]

Returns the name of xml-file contaning the image description.

C.2 Figure Class Reference

#include <figure.h>

Inheritance diagram for Figure::

Figure

ComplexFigure ConvexFigure EllipseFigure RectangleFigure TriangleFigure

C.2.1 Detailed Description

Abstract class for image primitves, or Figures.

An image (FigurativeImage) consists of a set of Figures.

Public Types

• enum Type { ELLIPSE, RECTANGLE, TRIANGLE, PRIMITIVES }
• enum { CONVEX = PRIMITIVES, COMPLEX }
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Public Member Functions

• Figure (unsigned int type)
• unsigned int type () const
• double size () const
• double deformation () const
• double lowering () const
• double weight () const
• void weight (double w)
• double absoluteWeight () const
• void normalizeWeight (double factor)
• int index () const
• const Point & center () const
• bool isSymmetric () const
• bool isRotating () const
• double frame () const
• double computeSimilarity (Figure ∗other, unsigned int transfType=Transformation::SIMILARITY)
• FigureRelation ∗ getRelation (int index) const
• virtual double rate (Figure ∗other)
• void setRelation (int index, FigureRelation ∗rel)
• unsigned int getNrLayers () const
• virtual const PolygonalShape ∗ getShapeRep () const
• virtual Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• bool selfCheck ()
• virtual Figure ∗ copy ()=0

Static Public Member Functions

• static double getStdRating (const Figure &f1, const Figure &f2)
• static Figure ∗ sbuildFromXML (const xmlpp::Node ∗node)

C.2.2 Member Enumeration Documentation

C.2.2.1 enum Figure::Type

Primitive figure types.

C.2.2.2 anonymous enum

Other figure types.

C.2.3 Constructor & Destructor Documentation

C.2.3.1 Figure::Figure (unsigned int type) [inline]

Figure is initialised with the specified type.

C.2.4 Member Function Documentation

C.2.4.1 unsigned int Figure::type () const [inline]

Returns type of this figure.
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C.2.4.2 double Figure::size () const [inline]

The size of the figure, which is defined to be the perimeter of enclosing rectangle minimizing the aspect
ratio.

C.2.4.3 double Figure::deformation () const [inline]

The aspect ratio.

C.2.4.4 double Figure::lowering () const [inline]

Factor for lowering the figure’s weight because of being a frame or a duplicate.

C.2.4.5 double Figure::weight () const [inline]

Returns relative weight within the image if this Figure.

C.2.4.6 void Figure::weight (double w) [inline]

Assignes the Figure its relative weight within the image.

C.2.4.7 double Figure::absoluteWeight () const [inline]

The weight of the figure based on its size and salience.

C.2.4.8 void Figure::normalizeWeight (double factor) [inline]

Computes the relative weight as absoluteWeight/factor.

C.2.4.9 int Figure::index () const [inline]

Returns index of this Figure within the image representation.

C.2.4.10 const Point& Figure::center () const [inline]

Returns center of the figure which is defined to be the center of the enclosing rectangle minimizing the
aspect ratio.

C.2.4.11 bool Figure::isSymmetric () const [inline]

Indicates whether this Figure has a reflection symmetry.

C.2.4.12 bool Figure::isRotating () const [inline]

Indicates whether this Figure has a rotational symmetry.

C.2.4.13 double Figure::frame () const [inline]

Returns the likeliness of this Figure being a frame.
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C.2.4.14 double Figure::computeSimilarity (Figure ∗ other, unsigned int transfType =
Transformation::SIMILARITY)

Computes and returns the similarity value of this Figure with the given other Figure.

Parameters:

other Other figure to be comared to.

transfType Specifies the class of transformations one of the Figures is allowed to undergo. If none is
specified the type defaults to similarity maps.

C.2.4.15 FigureRelation∗ Figure::getRelation (int index) const [inline]

Returns a pointer to a FigureRelation object that describes the inner relation of this Figure and the one
specified by the index.

Parameters:

index Index of a Figure within the same image.

C.2.4.16 double Figure::rate (Figure ∗ other) [virtual]

Returns a rating in [0,1] to indicate a similarity between this and the other figure.

Reimplemented in ComplexFigure, and ConvexFigure.

C.2.4.17 void Figure::setRelation (int index, FigureRelation ∗ rel) [inline]

Adds a FigureRelation to the Figures list of relations.

Parameters:

index Index of the other Figure.

rel Pointer to FigureRelation object corresponding to the relation between this Figure and the one
idicated by index.

C.2.4.18 double Figure::getStdRating (const Figure & f1, const Figure & f2) [static]

Returns the similarity rating for two given figures if they are both of a ’primitive’ type, that is, ELLIPSE,
RECTANGLE or TRIANGLE.

Ratings of two primitives are constant and can be held in a static array. Exceptions are Ellipse-Ellipse and
Rectangle-Rectangle ratings, which are computed dynamically.

C.2.4.19 unsigned int Figure::getNrLayers () const [inline]

Returns the number of layers the Figure has.

C.2.4.20 virtual const PolygonalShape∗ Figure::getShapeRep () const [inline, virtual]

Returns representation of this shape as a polygonal curve or a set of polygonal curves.
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C.2.4.21 Figure ∗ Figure::sbuildFromXML (const xmlpp::Node ∗ node) [static]

Constructs representation of a figure from an xml-notation.

C.2.4.22 Figure ∗ Figure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented in ComplexFigure, ConvexFigure, EllipseFigure, RectangleFigure, and TriangleFigure.

C.2.4.23 bool Figure::selfCheck ()

Tests the consistency the representation.

C.2.4.24 virtual Figure∗ Figure::copy () [pure virtual]

Returns a copy this Figure.

Implemented in ComplexFigure, ConvexFigure, EllipseFigure, RectangleFigure, and TriangleFigure.

C.3 EllipseFigure Class Reference

#include <ellipse_figure.h>

Inheritance diagram for EllipseFigure::

EllipseFigure

Figure

C.3.1 Detailed Description

Figure that represents an ellipse.

Public Member Functions

• EllipseFigure (Point &center, double radius, double ratio=1.0, double angle=0.0)
• Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• Figure ∗ copy ()

Static Public Member Functions

• static Figure ∗ createStdFigure (double ratio=1.0)

C.3.2 Constructor & Destructor Documentation

C.3.2.1 EllipseFigure::EllipseFigure (Point & center, double radius, double ratio = 1.0, double
angle = 0.0)

Create an ellipse with given parameters.
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Parameters:

center the center of the ellipse

radius half the main axis

ratio aspect ratio

angle angle between x-axis and main axis

C.3.3 Member Function Documentation

C.3.3.1 Figure ∗ EllipseFigure::createStdFigure (double ratio = 1.0) [static]

Creates an ellipse with the given axes ratio.

Default axes ratio is 1, which creates a circle.

C.3.3.2 Figure ∗ EllipseFigure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented from Figure.

C.3.3.3 Figure∗ EllipseFigure::copy () [inline, virtual]

Returns a copy this Figure.

Implements Figure.

C.4 TriangleFigure Class Reference

#include <triangle_figure.h>

Inheritance diagram for TriangleFigure::

TriangleFigure

Figure

C.4.1 Detailed Description

Figure that represents a triangle.

Public Member Functions

• TriangleFigure (const Point &p1, const Point &p2, const Point &p3)
• Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• Figure ∗ copy ()

Static Public Member Functions

• static Figure ∗ createStdFigure ()
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C.4.2 Constructor & Destructor Documentation

C.4.2.1 TriangleFigure::TriangleFigure (const Point & p1, const Point & p2, const Point & p3)

Creates a triangle with given corner points.

C.4.3 Member Function Documentation

C.4.3.1 Figure ∗ TriangleFigure::createStdFigure () [static]

Creates an equilateral triangle.

C.4.3.2 Figure ∗ TriangleFigure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented from Figure.

C.4.3.3 Figure∗ TriangleFigure::copy () [inline, virtual]

Returns a copy this Figure.

Implements Figure.

C.5 RectangleFigure Class Reference

#include <rectangle_figure.h>

Inheritance diagram for RectangleFigure::

RectangleFigure

Figure

C.5.1 Detailed Description

Figure that represents a rectangle.

Public Member Functions

• RectangleFigure (Point &center, double radius, double ratio=1.0, double angle=0.0)
• Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• Figure ∗ copy ()

Static Public Member Functions

• static Figure ∗ createStdFigure (double ratio=1.0)
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C.5.2 Constructor & Destructor Documentation

C.5.2.1 RectangleFigure::RectangleFigure (Point & center, double radius, double ratio = 1.0, dou-
ble angle = 0.0)

Create a rectangle with given parameters.

Parameters:

center the center of the rectangle

radius half the longer side

ratio aspect ratio

angle angle between x-axis and longer side

C.5.3 Member Function Documentation

C.5.3.1 Figure ∗ RectangleFigure::createStdFigure (double ratio = 1.0) [static]

Creates axes aligned rectangle with a given aspect ratio, centered at origin.

Default aspect ratio is 1, that is a square is created.

C.5.3.2 Figure ∗ RectangleFigure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented from Figure.

C.5.3.3 Figure∗ RectangleFigure::copy () [inline, virtual]

Returns a copy this Figure.

Implements Figure.

C.6 ConvexFigure Class Reference

#include <convex_figure.h>

Inheritance diagram for ConvexFigure::

ConvexFigure

Figure

C.6.1 Detailed Description

Figure that represents a convex polygon.
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Public Member Functions

• ConvexFigure (PolygonalCurve &p)
• double rate (Figure ∗other)
• Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• Figure ∗ copy ()

C.6.2 Constructor & Destructor Documentation

C.6.2.1 ConvexFigure::ConvexFigure (PolygonalCurve & p) [inline]

Creates a convex Figure from a given convex polygonal curve.

C.6.3 Member Function Documentation

C.6.3.1 double ConvexFigure::rate (Figure ∗ other) [virtual]

Returns a rating in [0,1] to indicate a similarity between this and the other figure.

Reimplemented from Figure.

C.6.3.2 Figure ∗ ConvexFigure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented from Figure.

C.6.3.3 Figure∗ ConvexFigure::copy () [inline, virtual]

Returns a copy this Figure.

Implements Figure.

C.7 ComplexFigure Class Reference

#include <complex_figure.h>

Inheritance diagram for ComplexFigure::

ComplexFigure

Figure

C.7.1 Detailed Description

Figure that represents a polygonal shape, whichever kind.

Public Member Functions

• ComplexFigure (const PolygonalShape &shape)
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• double rate (Figure ∗other)
• Figure ∗ buildFromXML (const xmlpp::Node ∗node)
• Figure ∗ copy ()

C.7.2 Constructor & Destructor Documentation

C.7.2.1 ComplexFigure::ComplexFigure (const PolygonalShape & shape) [inline]

Creates a Figure object from a given PolygonalShape.

The shape can be a single polygon curve or a set of such curves.

C.7.3 Member Function Documentation

C.7.3.1 double ComplexFigure::rate (Figure ∗ other) [virtual]

Returns a rating in [0,1] to indicate a similarity between this and the other figure.

Reimplemented from Figure.

C.7.3.2 Figure ∗ ComplexFigure::buildFromXML (const xmlpp::Node ∗ node) [virtual]

Constructs representation of a figure from an xml-notation.

Reimplemented from Figure.

C.7.3.3 Figure∗ ComplexFigure::copy () [inline, virtual]

Returns a copy this Figure.

Implements Figure.

C.8 FigureRelation Class Reference

#include <figure_relation.h>

C.8.1 Detailed Description

This class stores information about a relation between two Figures of one image.

A FigureRelation object contains information about

• the distance between the figures relative to image size,

• whether two figures are (nearly) equal, or whether one of them is a rotated/mirrored copy of the
other,

• size ratio of two figures.

Each relation between two figures also has a weight.
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Public Member Functions

• FigureRelation (int index)
• double absoluteWeight ()
• double weight ()
• void normalizeWeight (double w)
• int index ()
• double rate (FigureRelation ∗other)
• FigureRelation ∗ buildFromXML (const xmlpp::Node ∗node)
• void clear ()

Static Public Member Functions

• static void relate (Figure ∗f1, Figure ∗f2, int imageSize)

Static Public Attributes

• static int unique_id = 0

C.8.2 Constructor & Destructor Documentation

C.8.2.1 FigureRelation::FigureRelation (int index)

Creates an empty relation with a given index.

C.8.3 Member Function Documentation

C.8.3.1 double FigureRelation::absoluteWeight () [inline]

Weight of the relation based on the weight of the two figures.

C.8.3.2 double FigureRelation::weight () [inline]

Returns relative weight if this relation.

C.8.3.3 void FigureRelation::normalizeWeight (double w) [inline]

Computes the relative weight as absoluteWeight/w.

C.8.3.4 int FigureRelation::index () [inline]

Returns index of this relation within the image.

C.8.3.5 double FigureRelation::rate (FigureRelation ∗ other)

Returns the value of similarity between this relation and a relation between two figures in another image.

C.8.3.6 void FigureRelation::relate (Figure ∗ f1, Figure ∗ f2, int imageSize) [static]

Computes and stores relation between two given figures of one image.
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C.8.3.7 FigureRelation ∗ FigureRelation::buildFromXML (const xmlpp::Node ∗ node)

Creates a FigureRelation from xml-notation.

C.9 XMLValidator Class Reference

#include <xml_validator.h>

C.9.1 Detailed Description

An object of this class can check the validity of an input file.

The input file is checked regarding the validity of the xml format according to a given dtd, and regarding
the consistency of the data.

Public Member Functions

• XMLValidator (char ∗dtd=NULL)
• bool validate (char ∗xmlFile, bool check=true)

C.9.2 Constructor & Destructor Documentation

C.9.2.1 XMLValidator::XMLValidator (char ∗ dtd = NULL)

Creates an object for validating based on a given dtd.

The dtd is read from file system, it has to comply with the present program version.

Parameters:

dtd Pathname of dtd

C.9.3 Member Function Documentation

C.9.3.1 bool XMLValidator::validate (char ∗ xmlFile, bool check = true)

Checks the validity of an input file.

The input file is checked regarding the validity of the xml format according to the previously given dtd, and
(if wanted) regarding the consistency of the data. Input is read from file system.

Parameters:

inputFile Pathname of image description

check whether consistency of data shall also be checked

Returns:

true if input file is a valid image description, false otherwise
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