
PROFI

Project number: FP6-511572
Project acronym: PROFI
Title: Perceptually-relevant Retrieval Of Figurative Images

Deliverable No: D4.3: Algorithms to match sets of curves

Short description:
Randomized algorithms are developed for finding similarities between two shapes A and
B. Shapes are modelled by sets of line segments or polygonal curves. The major idea is to
take random samples of points from both shapes and give a “vote” for that transformation
(translation, rigid motion, or similarity) matching one sample with the other. If that
experiment is repeated frequently we obtain by the votes, a certain distribution of points
in the space of transformations. Clusters of this point set indicate which transformations
give the best match between the two figures.

Due month: 12
Delivery month: 12
Lead partner: FUB
Partners contributed: FUB, UU
Classification: Public

Project funded by the European Community under the
“Information Society Technologies” Programme

1

1 Introduction

In this work package we develop algorithms for matching two planar shapes. We assume that
shapes are modeled by sets of plane polygonal curves (or sets of line segments). As possible
classes of transformations we will consider translations, rigid motions (i.e., translations and
rotations) and similarities (i.e., translations, rotations and scalings).

The general situation is that we are given two objects A and B and a set T of allowable
transformations and we want to transform B optimally so that the transformed image of B is
as close to A as possible. Usually the quality of match is measured by some distance function
or similarity measure δ(A,B) which assigns a number to any pair of objects A and B. We
call the problem of optimal matching of the complete shape B to the complete shape A a
complete-complete matching (CCM).

Several similarity measures and algorithms are known to match two curves, especially
polygonal curves, see [15, 23] for surveys. One of the “universal” similarity measures is the
Hausdorff distance which is defined for any two compact sets A and B. It assigns to each
point of one set the distance to its closest point on the other and takes the maximum over all
these values. For arbitrary sets of n line segments the Hausdorff distance can be computed
in O(n log n) time and the matching problem under translations and rigid motions can be
solved in polynomial time [3, 4]. Being a maximum metric, the Hausdorff-distance is very
sensitive to noise: a single outlier can determine the distance value, thus two otherwise similar
shapes can have a large Hausdorff distance. There are approaches to overcome this drawback,
such as percentile-based Hausdorff distance and mean Hausdorff distance [15]. On the other
hand, there are examples where two less similar shapes get a small dissimilarity value. A
few similarity measures are defined for pairs of curves, which capture the course of a curve,
or the relative course of two curves: Fréchet distance [4], turning function distance [6], and
dynamic time warping distance [12, 19]. There are no generalizations of those distances to
sets of curves, though [5] gives a generalization of the Fréchet distance to geometric graphs.
A similarity measure which is designed for sets of curves is the reflection visibility distance
[14]. It is based on the visibility complex at every point in the plane. The reflection visibility
distance is robust against different kinds of disturbances but is expensive to compute.

Our objective is to develop an algorithm which comes close to human similarity perception
and allows an efficient implementation for the retrieval system. The method we introduce here
attempts to capture an intuitive notion of “matching”, i.e. we find one or more candidates
for the best transformations, that when applied to the shape B maps the most similar parts
of the shapes to each other.

2 Results

2.1 Probabilistic matching of sets of line segments

2.1.1 Translations

Given two sets A,B ⊂ R2 consisting of all points lying on a finite set of polygonal curves (or,
equivalently, line segments). Find that translation t, which lets the translated image of B,
t(B), match best A, i.e. maps the most similar parts of the shapes A and B to each other.

Since a set of line segments is actually a one dimensional domain, we can define a uniform
random distribution on this domain in a similar way as a uniform random distribution on an

2

interval of real numbers. Selecting a random point under uniform distribution can be done
in a following way: select a random segment from the set, where the probabilities for the
segments are weighted with the segment lengths; then select uniformly a random point on
that segment. The algorithm is quite simple:

1. Take a random point a in A and a random point b in B under uniform distribution, and
give one “vote” to the translation t = a− b.

2. Repeat this experiment many times. Then the distribution of votes in the (two-
dimensional) translation space T approximates a certain probability distribution.

3. For a given neighborhood size δ take the points of T with the highest number of votes
in their δ-neighborhood as candidates for good translations.

The idea behind this algorithm, is that the translations, which map large parts of shapes
to each other should get significantly more votes than others. The size of the sampling
neighborhood δ influences the quality of the match, the role of δ is explained more detailed
in section 2.1.1.

In order to find a translation with the highest number of votes, or the sampling points,
in its neighborhood, we consider the arrangement of the δ-neighborhoods of the sampling
points. The basic observation is that if a sampling point s is contained in the δ-neighborhood
of a translation t, then t is also contained in the δ-neighborhood of s. All translation vectors
in the same cell of the arrangement have the same sampling points in their δ-neighborhoods.
Therefore it is sufficient to traverse the arrangement and take the nodes with the highest
number of sampling points whose δ-neighborhoods contain this node.

Probability distribution in translation space. Here we analyze the probability dis-
tribution in the translation space sampled by the algorithm above. The set of translations
considered by our algorithm is T =

{
a− b ∈ R2 : a ∈ A, b ∈ B

}
, which corresponds to the

Minkowski sum A⊕(−B). Before considering the general situation, let us take a closer look at
two simple cases, where the sets A and B contain each a single straight line segment sa = a1a2

and sb = b1b2 respectively. Let la and lb denote the lengths of the segments.
Case 1: The segments sa and sb are not parallel. Let α denote the absolute value of the

acute angle between the straight lines supporting sa and sb. Then the translations sampled
by our algorithm, T , are located within a parallelogram spanned by the points a1 − b1, a1 −
b2, a2−b1, a2−b2 (s. Figure 1). Any point a ∈ sa can be represented as a linear combination
of points a1, a2, a = (1− λ)a1 + λa2 = a1 + λ(a2 − a1), with λ ∈ [0, 1], and a point b ∈ sb as
a linear combination of points b1, b2, b = b1 + µ(b2 − b1), with µ ∈ [0, 1]. The corresponding
translation is then a − b = λ(a2 − a1) − µ(b2 − b1) + a1 − b1, which can be written as
λ((a2 − b1)− (a1 − b1)) + µ((a1 − b2)− (a1 − b1)) + (a1 − b1). The latter expression is a linear
combination of the vectors (a2 − b1) − (a1 − b1) and (a1 − b2) − (a1 − b1) translated by the
vector (a1 − b1), which characterizes exactly the points within the parallelogram described
above.

According to our algorithm any pair of points a ∈ A and b ∈ B has equal chances to
get selected within one random experiment, and since the segments are not parallel and
thus have at most one intersection point for any translation of sb, every pair contributes a
unique translation a− b to our sample. Let R be a region of the translation plane. From the
considerations above follows: If R has no intersection with T , the probability P (R) of R is 0,

3

and any region R ⊂ T has the probability proportional to its area. In general, the probability
of R ⊂ R2 is proportional to the area of R ∩ T . This yields a uniform distribution on T .
Knowing that the area of T equals lalb sinα and that the total probability of T should be 1,
we get the following density function:

f(t) =

{
1

lalb sin α t ∈ T

0 t ∈ R2 \ T
.

Figure 1 illustrates this case.

a1

b1 b2

a2

sa

sb

a2 b1
−

a1 b1
−a1 b2

−

a2 b2
−

Figure 1: Density function of the probability distribution on the translation space for two
non parallel line segments

Case 2: The segments sa and sb are parallel. Then the four corner points of the parallel-
ogram T , described in the previous case, are collinear, and T is thus a straight line segment.
W.l.o.g. let T have a1 − b2 and a2 − b1 as end points, and let la < lb (s. Figure 2). The other
two important points are then a2−b2 and a1−b1. Let p1 = a1−b2, p2 = a2−b2, p3 = a1−b1,
and p4 = a2−b1. As one can easily see, the length of the segment T is la + lb and the distance
between the points p2 and p3 is lb− la. Now any translated image of sb has either no intersec-
tion with sa, then the corresponding translation would never be generated by our algorithm,
or the intersection is a segment, then there are many pairs “voting” for the corresponding
translation. The number of those pairs is proportional to the length of the intersection seg-
ment. Note that, when a translation t ∈ p2p3 is applied to sb, the intersection of the image
of sb with sa is the whole segment sa. This implies that the translations in p2p3 have equal
chances to get selected by a random experiment, i.e. we have uniform distribution on p2p3. As
t moves from p2 to p1 or from p3 to p4 along T , the length of the corresponding intersection
segment decreases linearly. Further analysis leads to the following one-dimensional density
function:

f(t) =


‖t−p1‖

lalb
if t = (1− λ)p1 + λp2 for λ ∈ [0, 1]

1
lb

if t = (1− λ)p2 + λp3 for λ ∈ [0, 1]
‖t−p4‖

lalb
if t = (1− λ)p3 + λp4 for λ ∈ [0, 1]

0 if t ∈ R2 \ T

.

See Figure 2 for an illustration. The probability distribution P (R) for a region R of the
translation plane is then the value of the curve integral of the density function f(t) on the
segment T ∩R.

In the general situation A is a set of straight line segments sa1, . . . , san and B is a set of
segments sb1, . . . , sbm with |sai| = lai, i = 1..n, |sbj | = lbj , j = 1..m and |A| =

∑n
i=1 lai = la,

|B| =
∑m

j=1 lbj = lb, and αij is the absolute value of the acute angle between the lines
supporting segments sai, sbj . Let Tij denote the sets of translations induced by the segments
sai, sbj , clearly, Tij = sai⊕ (−sbj). Let Pij denote the probability distributions corresponding
to the pairs of segments sai, sbj defined as in case one or two described above, depending

4

a2

b2

b1

a1

sa

sb a2 b2
−

a1 b1
−

a1 b2
−

a2 b1
−

1
=p

2
=p

3
=p

4=p

Figure 2: Density function of the probability distribution on the translation space for two
parallel line segments

on which is applicable. The portion of point pairs generated by the algorithm which are
contributed by the segments sai, sbj is lailbj

lalb
. Thus, if R is a region of the translation plane

the probability of R is
∑n

i=1

∑m
j=1

lailbj

lalb
Pij(R). Figure 3 shows the density function for sets A

and B each containing two line segments. The superimposition of the two sets in the bottom
of Figure 3 results from a translation corresponding to the region with the highest density.

Figure 3: Probability distribution on the translation space for two sets of line segments

As one can see, the density function of the probability distribution in translation space has
support T =

⋃n
i=1

⋃m
j=1 Tij , which is a union of n ·m parallelograms or line segments. These

parallelograms and line segments form an arrangement in the translation plane. Within
each cell of the arrangement the value of the density function is the weighted sum of the
density functions corresponding to the parallelograms or segments containing the cell. This
arrangement can have a complexity of Θ(n2m2).

So, we could compute T and the values of the density function in each cell exactly, but
because of the high complexity we approximate it with our algorithm described before.

Analysis of the algorithm. T = A ⊕ (−B) is the set of possible translations sampled
by our algorithm. For a translation t ∈ T let Uδ(t) =

{
x ∈ R2 : ‖x− t‖ ≤ δ

}
denote the

δ-neighborhood of t.
Let S be a random sample of T from the experiment, |S| = N ∈ N and a(t) denote the

number of sample points within the δ-neighborhood of a translation t. Let p(t) denote the
probability of Uδ(t) and the random variable p̃(t) = a(t)/N which is an estimate of p(t).

5

What does the value p(t) mean for the shapes A and B and the translation t? Consider
a subset M(t) of A × B, defined as M(t) = {(a, b) : a ∈ A, b ∈ B, ‖a− (b + t)‖ ≤ δ}, that is
a set of pairs of points a ∈ A and b ∈ B which are mapped into the δ-neighborhood of each
other if B is translated by t. As the detailed analysis shows, maximizing p(t) we maximize the
measure of the set M(t) within A×B. For the most cases it also means, that the translation
t0 maximizing p(t) brings the largest fitting parts of A and B into the δ-neighborhood of each
other.

The choice of δ thus controls the trade-off between the quality of match and the size of the
parts matched. With a small value of δ our algorithm would find a translation which maps
nearly congruent parts of two shapes to each other, see Figure 4(a). A large value of δ leads
to a translation which gives a rough match but for larger parts of the shapes, see Figure 4(b).

(a) (b)

Figure 4: Matching with (a) small grid size and (b) large grid size

For nearly congruent figures small neighborhood size already leads to a complete-complete
matching, see Figure 5(a), and with the same value for δ we can get complete-partial matching,
see Figure 5(b). So δ does not alone determine what kind of matching we get or how large
the matched parts are. We are working on a valuation function that would award matched
parts and in case of complete-complete matching give penalties for the “outliers”.

In the following we give some error bounds for the distribution approximation. From these
error bound theorems we can derive the bounds on the number of the experiments needed to
get a good estimate with high probability. Using Chernoff bounds (see Section 4.1 in [18]) we
can bound the absolute and relative errors for the estimate:

Theorem 2.1 (Absolute error). Given two shapes modeled by sets of line segments of com-

plexity n in the plane and parameter ε, η, 0 ≤ ε, η ≤ 1. In time O(n +
log 1

η
log n

ε2 +
log2 1

η

ε4) we
can compute a translation tapp such that |p̃(tapp)− p(topt)| ≤ ε with probability at least 1− η,
where topt is a translation maximizing p(t).

The number of sample translation vectors sufficient to get an approximation error at most

ε with probability at least 1− η is then N =
16 ln 1

η

ε2 + 2.

6

(a) (b)

Figure 5: Matching with a sampling neighborhood of the the same size in translation space
for different shapes

Theorem 2.2 (Relative error). Given two shapes A and B modeled by sets of line segments
in the plane of complexity n and of diameter DA and DB respectively, and parameter ε, η,

0 ≤ ε, η ≤ 1. In time O(n+
log 1

η
(DA+DB)2 log n

ε2δ2 +
log2 1

η
(DA+DB)4

ε4δ4) we can compute a translation
tapp such that |p̃(tapp)− p(topt)| ≤ εp(topt) with probability at least 1− η.

In order to get a relative approximation error of at most ε with probability at least 1− η

it is sufficient to take N =
32(DA+DB)2 ln 2

η

ε2δ2 + 2 sample translation vectors.
The proofs of the theorems are given in appendix A.

2.1.2 Rigid motions

Let again A and B be finite sets of polygonal curves in R2 and the set of allowed transforma-
tions the three-dimensional space T of rigid motions, i.e. translations and rotations. A rigid
motion t = (α, vx, vy) is defined by a rotation angle α and a translation v = (vx, vy) and maps

a point b ∈ R2 to a point t(b) = Mb+ v, where M =
(

cos α − sinα
sin α cos α

)
is the rotation matrix.

Generating a random rigid motion bears some problems: whereas for two points a and b
there exists a unique translation, which maps the point b to the point a, there are infinitely
many rotation and translation combinations, under which the image of the point b equals point
a. A pair of points a1, a2, and a pair of points b1, b2 define a unique similarity transformation
mapping b1 to a1 and b2 to a2, see section 2.1.3, but it is not clear what rigid motion should
be assigned to the pairs of points, since in general there is no rigid motion mapping b1 to a1

and b2 to a2.
If, however, together with each point a ∈ A we have some unit length direction vector da

7

(e.g. direction of a tangent line) and for each b ∈ B a direction vector db, then there exists
a unique rigid motion t = (α, vx, vy), such that t(db) is parallel to da and t(b) = a. t is a
solution to the following linear system of equations: Mdb = da and Mb + v = a, where M is
the rotation matrix as defined above and v is a translation vector. So we could take a random
point a in set A and the direction of the tangent line da at this point, and a random point b
in set B with the direction db and give a vote to a rigid motion defined by this point-direction
pair. But since we are dealing with line segments (or polygonal curves) we can only get a
finite number of rotation angles and for some cases miss the most suitable angle. For two
curves in Figure 6 using the direction of a tangent line or the slope of a segment we would
only get two possible rotation angles: π

4 and −π
4 , though the best rotation angle would be 0.

Figure 6: Matching under rigid motions: Difference between slopes of the segments does not
necessarily “vote” for the optimal rotation angle.

We also considered taking a random rotation and a translation determined by a pair of
points, randomly selected from the sets A and B, but then we would sample unnecessarily
many transformations. A strategy that seems to give best results, is to select a random point
a from set A, and take another point a′ from the curve containing point a, which is a fixed
curve-distance away from the first one, direction on the curve can be chosen randomly or be
fixed for each curve by the order of its corner points. If there is no point a′ on the curve
with that fixed curve-distance, then take the end point of the curve as a′. Take the vector
da = a′ − a as the direction vector for point a. Generate a random point-vector pair b ∈ B,
db in a similar way. The direction vectors da and db are then scaled to a unit lengths. These
two point-vector pairs determine a unique rigid motion as described above. This approach
overcomes the problem with the limited number of tangent slopes.

The matching algorithm for rigid motions is similar to that for the translations:

1. Take a random point-vector pair a ∈ A, da (as described above) and a random point-
vector pair b ∈ B, db under uniform distribution, and give one “vote” to the rigid motion
t, which maps the vector db to the vector da and the point b to point a.

2. Repeat this experiment many times. This approximates a probability distribution in a
three-dimensional space T of rigid motions.

3. For a given neighborhood size δ take the points of T with the highest number of sampling
points in their δ-neighborhood (δ-neighborhood of a rigid motion is explained later) as
candidates for good transformations.

The idea behind it is, again, that “good” rigid motions, i.e. those, that when applied to the
set B, map the best matching parts of shapes A and B to each other, should get more votes,
than the others. As before, the choice of δ determines how similar the matched parts of the
shapes ought to be.

Let Bα denote the set B rotated by an angle α about the origin, and bα a point b rotated
by α. For a fixed angle α the subspace in the remaining two dimensions, i.e. the space of

8

translations, which is sampled by our algorithm, is exactly A⊕ (−Bα), as we have argued in
the previous section. Then the probability distribution approximated by the algorithm has
support T =

{
t = (α, vx, vy) ∈ R3 : α ∈ [0, 2π] and ∃a ∈ A, b ∈ B s.t. a− bα = (vx, vy)

}
.

We define the δ-neighborhood of a rigid motion t as the set of rigid motions under which
the image of any point b ∈ B is not more than δ away from its image under transformation
t: Uδ(t) =

{
t′ ∈ R3 : ∀b ∈ B ‖t(b)− t′(b)‖ ≤ δ

}
.

If a point b has distance r to the origin, then the rotation by angle α causes the displace-
ment d1 = r

√
2(1− cos α) by the law of cosines, see Figure 7. The total distance between a

r

r

b

b’
1d

Figure 7: Displacement of a point b after a rotation by angle α

point with distance r to the origin and its image after applying a rotation α and translation
v is at most r

√
2(1− cos α) + ‖v‖.

Let DA and DB denote the diameters of the sets A and B respectively. W.l.o.g. let the
center of a bounding box of B be the origin, then the distance from any point in B to the
origin is at most r = DB/2. For practical usage we can restrict a δ-neighborhood of a rigid
motion t = (α, vx, vy) to a set Vδ(t) ⊂ Uδ(t) defined as

Vδ(t) =
{

t′ = (α′, v′x, v′y) ∈ R3 : r
√

2(1− cos(α′ − α)) +
∥∥(v′x, v′y)− (vx, vy)

∥∥ ≤ δ
}

.
The number of votes a δ-neighborhood of a rigid motion t gets is proportional to the

number of point pairs a ∈ A, b ∈ B brought into the δ-neighborhood of each other by the
transformation t applied to the set B.

(a) (b)

Figure 8: Matching under rigid motions: (a) original position, (b) matching produced by the
algorithm

2.1.3 Similarities

Given two finite sets A,B of polygonal curves (or line segments) in R2. The set of allowed
transformations is now the four-dimensional space of similarities, i.e. translations, rotations

9

and scalings. A similarity map t = (α, k, vx, vy) is defined by a rotation angle α, scaling factor
k and a translation vector v = (vx, vy). t maps a point b ∈ R2 to a point t(b) = Mb+v, where

M =
(

k cos α −k sinα
k sinα k cos α

)
. Two points a1, a2 in A, and two points b1, b2 in B, determine

a unique similarity transformation t mapping b1 to a1 and b2 to a2. t is a solution to the
following system of liner equations: Mb1 + v = a1 and Mb2 + v = a2, where M and v are
defined as above. The matching algorithm is now:

1. Take two random points a1, a2 in A and two random points b1, b2 in B under uniform
distribution, and give one “vote” to the similarity map t, which maps b1 to a1 and b2

to a2 as described above.

2. Repeat this experiment many times, yielding an approximation of a certain probability
distribution in a four-dimensional space T of similarity maps.

3. For a given neighborhood size δ take the points of T with the highest number of sampling
points in their δ-neighborhood (as defined below) as candidates for good transforma-
tions.

Again, we expect “good” similarity maps to receive more votes, than the ones that do not
result in a good match. The role of the size of the sampling neighborhood is similar to that
for the translations: δ determines how close, i.e. how similar, the shapes or parts of the shapes
should be in order to get matched.

The set of possible similarity maps, which are sampled by the algorithm is
T =

{
t ∈ R4 : ∃a1, a2 ∈ A, b1, b2 ∈ B such that t(b1) = a1 and t(b2) = a2

}
.

We have to be careful defining a δ-neighborhood of a similarity map t: we want only those
transformations t′ to belong to the δ-neighborhood of t, under which the image of any point
in B has at most distance δ to its image under transformation t:
Uδ(t) =

{
t′ ∈ R4 : ∀b ∈ B ‖t(b)− t′(b)‖ ≤ δ

}
.

Let us consider the displacement of a point b introduced by each of the individual trans-
formations that make up a similarity map: rotation, scaling and transformation. As we have
argued in previous section, the displacement of a point b with distance r to the origin, under
rotation by angle α is d1 = r

√
2(1− cos α). Scaling by factor k moves a point b d2 = r(k− 1)

away from its original position if k ≥ 1, and d2 = r(1 − k), if k < 1, see Figure 9(a). The
joint displacement introduced by rotation α and scaling k can be expressed using the law
of cosines as d3(α, k, r) = r

√
1 + k2 − 2k cos α, see Figure 9(b). The total displacement of

a point b with distance r to the origin, caused by a similarity map t = (α, k, x, y) is then
d ≤ d3(α, k, r) + ‖v‖, where v = (x, y) is the translation vector.

d2b b’
krr

d2

r
b’

kr
b

d3

d3

r

b

b’’ b’kr

b

b’’

r

b’
kr

(a) (b)

Figure 9: Displacement of a point b after (a) scaling by factor k, (b) rotation by angle α and
scaling by factor k

10

If we first translate the set B, so that the center of a bounding box of B is placed at the
origin, then the largest possible distance of a point in B to the origin is r = DB/2, where
DB is the diameter of the set B. Now we can restrict a δ-neighborhood of a similarity map
t = (α, k, vx, vy) for practical use to a set Vδ(t) ⊂ Uδ(t):

Vδ(t) =
{

t′ = (α′, k′, v′x, v′y) ∈ R4 : r
√

1 + (k′/k)2 − 2(k′/k) cos(α′ − α) + ‖v′ − v‖ ≤ δ
}

.
In our preliminary implementation we sample T by placing a 4d-grid on it and counting

the votes within each grid cell, then we take the centers of the grid cells with the highest
number of votes as candidates for a good similarity map. For simplicity, we choose scale
and grid size for each dimension in such a way that a change in any direction separately
would cause a displacement at most δ. Therefore, the two dimensions, corresponding to the
translation vector have grid size δ. From the above displacement calculations follows: the
grid size of the rotation dimension is arccos(1− δ2/2r2) and the values of α range from 0 to
2π. For the scaling factor: axis has logarithmic scale to the base sk = 1+ δ/r and two scaling
factors kl < kr ∈ R+ bound a cell in the scaling dimension if logsk

kl and logsk
kr are integers

and kr
kl

= sk.

(a) (b)

Figure 10: Matching under similarities: (a) original position, (b) matching produced by the
algorithm

We can say that the similarity maps with many votes in their δ-neighborhood, if applied
to the set B, bring more pairs of points b1, b2 ∈ B into the δ-neighborhood of A than the
transformations with few votes.

2.2 Probabilistic matching of sets of polygonal curves

We are also working on heuristics, inorder to speed up the matching process, that is to find
good transformation candidates with less experiments. Here we describe an algorithm which
during one random experiment computes a sequence of transformations matching finite or-
dered sets of points from one shape to finite ordered sets of points from the other shape. The
quality of the match between two finite ordered point sets is measured by the weighted sum
of quadratic distances between the corresponding points. The resulting preliminary transfor-
mation is weighted with the quality of match and the size of the matched point sets. Then
we get a weighted sample of the transformation space, where the neighborhoods with large

11

weight are likely to contain candidates for transformations resulting in a good match for the
shapes. The idea behind it, is that a transformation which gives a good match for the shapes,
would give a good match for larger sets of points on these shapes. The details on selecting
the point sets and computing the candidate transformations are presented in the following.

Input are two sets S1, S2 of planar polylines and a transformation t is searched for, that best
maps S1 to S2. The classes of allowable transformations considered here are translations,
homotheties (scaling + translation), rigid motions (rotation + translation), similarities (ro-
tation + scaling + translation), and affine maps.

The problem of computing preliminary transformations consists of two subproblems: one is
to find correspondences between features, the other is to find a transformation that maps the
corresponding features to each other. If the correspondences are known, the transformation
is easy to compute – if the transformation is known the correspondences (if properly defined)
are easy to compute. But in the present case both are unknown.
In many approaches a minimum sample of features is used to compute the model parameters
(transformation in this case). When the random sample consensus (RANSAC) [17] is applied
these model parameters are validated with the complete data in a second step. In the pose
clustering approach [22] every such sample gives a vote and the set of all possible votes is
evaluated.
Here we use another approach: iteratively the sample is extended and the model is updated
until the whole data is part of the sample, or until sample and model are not longer consistent.

2.2.1 Finding Correspondences

Conspicuous features of curves arise from regions of high curvature [7] – regarding polylines
these regions are the vertices. But not every vertex, even though its turning angle may be
great, yields a feature recognizable by a human observer. For this reason, the mapping algo-
rithm trys to find corresponding vertices but also may match a vertex without corresponding
peer to a point lying on a line segment.

The initial part of every vote is the random choice of a single vertex of the two sets of poly-
lines each, and the direction for traversing the list of following verteces (also both possible
directions may be processed). Starting from that pair a sequence of sets of pairs of verte-
ces and vertex surrogates is generated. For every element of that sequence a corresponding
transformation is computed. The transformations belonging to a sequence are compared. The
one rated best gets an additional weight and is handed over to the clustering algorithm as a
preliminary transformation.

Let p0 be the randomly chosen vertex from the first set S1 and let p1, . . . , pk be the suc-
cessional verteces with respect to the randomly chosen direction. Analogous let q0 be the
randomly chosen vertex from the second set S2 and let q1, . . . , ql be the successional verteces.
The pair (p0, q0) is added to the – so far empty – sample set s.
For (p′, q′) being the last pair of points added to s, the distances to the successional vertex
pi resp. qj is computed as dp = ‖pi − p′‖ resp. dq = ‖qj − q′‖.
If dp and dq are nearly equal i.e. if |dp − dq| ≤ min(dp, dq) · a with a being a constant called
the alignment threshold, then the two verteces pi and qj are taken as a corresponding pair
which is added to the sample set s.

12

Otherwise a vertex surrogate is created. A surrogate is a point lying on an edge of the
polyline, but nevertheless is treated like a vertex. It is chosen to have the same distance to
its predecessor as the corresponding two verteces of the other polyline have. In the case of
dp < dq the surrogate is the point q′i = q′ · (1 − dp/dq) + qj · (dp/dq) and the pair (pi, q

′
i) is

added to s. The case dq < dp is handled analogously.

When the end of a polyline is reached, then starting from the initial pair the traversal is
performed in the other direction.

2.2.2 Calculating the Transformations

For every new pair of verteces or vertex surrogates added to s a transformation is computed
based on a least squares approach.
The easiest way would be to compute the transformation t′ ∈ T that minimizes the sum of
the squared distances

∑
(pi,qi)∈s ‖qi − t(pi)‖2 of the verteces. This would favour parts with

many verteces over parts with less verteces regardless of the extent and the expressiveness.
For that reason every pair (p, q) of corresponding verteces gets an additional weight w that
reflects the length of the incident edges e−p , e+

p and e−q , e+
q respectively if they belong to the

covered part of the polyline:
w(p, q) = (|e−p |+ |e+

p |+ |e−q |+ |e+
q |)/4

For the class T of allowable transformations being the class of translations or rigid mo-
tions, the transformation t ∈ T that minimizes the sum of the weighted squared distances∑

(pi,qi)∈s w(pi, qi) ‖qi − t(pi)‖2 and the vertex correspondences may be determined indepen-
dently from each other. But for the classes of transformations that allow scalings (i.e. ho-
motheties, similarities, and affine maps), the assignment of the verteces depends on that
scaling.

Scalings If scalings are allowed, for every single vote a prescaling factor ci is randomly
chosen such that ld(ci) is normally distributed with mean value ld(c̄i) where c̄i is the prescaling
factor of the transformation rated best so far. Sci

1 denotes the set S1 scaled by ci. For the rest
of the vote, every operation concerning the first set S1 (e.g. computing the distance between
two vertices) is performed on Sci

1 .

Translations A translation is defined by a translation vector v = (vx, vy)
⊥. A point

p = (px, py)
⊥ is mapped to p + v.

For a set of pairs of points s = {(p1, q1), . . . , (pk, qk)} the translation t = v that mini-
mizes the sum of the squared distances ε∗ =

∑k
i=1 ‖t(pi)− qi‖2 can easily be computed

as v = 1
k

∑k
i=1 qi − pi

The translation t = v that minimizes the sum of the weighted squared distances ε =∑k
i=1 w(pi, qi) ‖t(pi)− qi‖2 can easily be computed as v = 1

w(s)

∑k
i=1 w(pi, qi)(qi − pi) with

w(s) being the sum of all weights.
That means that having computed the optimal transformation for the set s′ ⊂ s of cardinality
k − 1 the optimal transformation for the set s can be computed in constant time.

13

Homotheties A homothety is defined by a scaling factor c and a translation vector v =
(vx, vy)

⊥. A point p = (px, py)
⊥ is mapped to p · c + v.

The optimal homothety is not computed directly, but first the prescaling is applied as de-
scribed above, and then the optimal translation is computed in a second step. The scaling
factor is restricted to be a positive real number, so that inversions are waived.

Rigid Motions A rigid motion is defined by a rotation angle ϕ and a translation vec-
tor v = (vx, vy)

⊥. A point p = (px, py)
⊥ is mapped to mp + v with m being the matrix(

cos ϕ − sinϕ
sin ϕ cos ϕ

)
.

For a set of pairs of points s = {(p1, q1), . . . , (pk, qk)} the rigid motion t = (ϕ, v) that min-
imizes the sum of the squared distances ε∗ =

∑k
i=1 ‖t(pi)− qi‖2 can easily be computed (as

described by [9]):
Let p̄ = 1

k

∑k
i=1 pi, q̄ = 1

k

∑k
i=1 qi, p̂i = pi − p̄, and q̂i = qi − q̄.

For a =
∑k

i=1 (qixpix + qiypiy) and b =
∑k

i=1 (qixpiy − qiypix) the rotation matrix is m =
1√

a2+b2
·
(

a b
−b a

)
The translation vector v is determined as v = q̄ −m · p̄.

The rigid motion t = (ϕ, v) that minimizes the sum of the weighted squared distances
ε =

∑k
i=1 w(pi, qi) ‖t(pi)− qi‖2 can be computed using the method described above with

slight modifications:
The centers of mass p̄ and q̄ are replaced by the weighted centers of mass. To compute
the rotation according to the weighted squared distances instead of the squared distances,
the radii (distance of a point to the weighted center of mass) are resized for that part.
p̂i =

√
w(pi, qi) · (pi − p̄), and q̂i =

√
w(pi, qi) · (qi − q̄). With this new pairs of points, the

conventional computation of m jields the desired result.
All the terms can be transformed to avoid the explicit computation of the (weighted) centers
of mass p̄ and q̄ such that having computed the optimal transformation for the set s′ ⊂ s of
cardinality k− 1 the optimal transformation for the set s can be computed in constant time.

Similarities A similarity is defined by a rotation angle ϕ, a scale c, and a translation
vector v = (vx, vy)

⊥. A point p = (px, py)
⊥ is mapped to mp + v with m being the matrix(

c · cos ϕ −c · sinϕ
c · sinϕ c · cos ϕ

)
.

First the prescaling is applied as described above, and then the optimal similarity is computed
in a second step.
For a set of pairs of points s = {(p1, q1), . . . , (pk, qk)} the similarity t = (m, v) that minimizes
the sum of the weighted squared distances ε =

∑k
i=1 w(pi, qi) ‖t(pi)− qi‖2 can easily be

computed by solving the linear equation system

k∑
i=1

w(pi, qi)


pix

2 + piy
2 0 pix piy

0 pix
2 + piy

2 piy −pix

pix piy 1 0
piy −pix 0 1

·


m11

m12

vx

vy

 =
k∑

i=1

w(pi, qi)


qixpix + qiypiy

qixpiy − qiypix

qix

qiy


14

That means that having computed the optimal transformation for the set s′ ⊂ s of cardinality
k − 1 the optimal transformation for the set s can be computed in constant time.

Affine Maps An affine map is defined by an arbitrary matrix m =
(

m1,1 m1,2

m2,1 m2,2

)
and a

translation vector v = (vx, vy)
⊥. A point p = (px, py)

⊥ is mapped to mp + v.

First the prescaling is applied as described above, and then the optimal affine map is computed
in a second step.
For a set of pairs of points s = {(p1, q1), . . . , (pk, qk)} the affine map t = (m, v) that minimizes
the sum of the weighted squared distances ε =

∑k
i=1 w(pi, qi) ‖t(pi)− qi‖2 can easily be

computed by solving the linear equation system

k∑
i=1

w(pi, qi)



pixpix pixpiy pix

pixpiy piypiy piy 0
pix piy 1

pixpix pixpiy pix

0 pixpiy piypiy piy

pix piy 1

 ·



m1,1

m1,2

vx

m2,1

m2,2

vy

 =
k∑

i=1

w(pi, qi)



qixpix

qixpiy

qix

qiypix

qiypiy

qiy



If the points are collinear, the affine map is not uniquely defined and the linear equation
system has no unique solution. In this special case, the optimal rigid motion is taken instead.
Again, having computed the optimal transformation for the set s′ ⊂ s of cardinality k−1 the
optimal transformation for the set s can be computed in constant time.

2.2.3 Checking Consistency

For every element of the sequence the consistency of the sample set (p0, q0) . . . (pi, qi) and the
appendant transformation ti has to be checked. Although consistency is a property concerning
the whole sample set, only the last added pair is considered because the emersion of crucial
inconsistency has to be appreciable in the pair causing it.
For lbb,i being the perimeter of the bounding box containing the covered part of the polyline
from the initial pair (p0, q0) up to the pair (pi, qi) a maximum tolerated error is defined as
emax,i = lbb,i · r with r being a constant called the relative error threshold. If the distance
ei = ‖qi−ti(pi)‖ exceeds the maximum tolerated error, the traversal of the polylines is ceased.
The index j for which emax,j − ej takes the maximum value, defines the transformation tj for
the vote (see fig. 11 and 12).
This definition of the stop criterion and the choice of the best index are invariant under
scalings and can be done in constant time. To achieve invariance under rotations also, the
bounding box had to be replaced by the minimum enclosing circle.

2.2.4 Weighting the Transformations

The two factors that have to be considered for weighting a transformation t are the expres-
siveness of the sample and the quality of the match. Both have to be balanced out so that

15

Figure 11: Two instances of the mpeg7shapeB dataset (ray-7, ray-20 and both mapped)

Figure 12: Perimeter of the bounding box vs. error of last added pair of points. The part
of the polyline defining the transformation for this vote is plotted green, the part skipped is
plotted red and dashed.

no part overrules the other.
The size of the set s is not a good choice for the expressiveness. A jag may be represented
by three verteces whereas the number of verteces needed to represent an arc is depending
on the resolution and may be arbitrary large. Another possible value is the length l of the
corresponding part of the polyline. It is easy to compute and does not suffer from the same
imbalance.

In a similar context [21] use the mean squared difference e′ of two graphs in the arclength v.
turning angle diagram for valuing the quality of a match. Their score function for comparing
matches is basically l/(1 + e′) but they mention that other score functions are possible.

Their definition has the drawback that the comparison of two matches is not scale invariant.
Let ε be the residual of the minimized objective function, let w(s) be the sum of all weights
of the pairs of points in the sample set s, and let dbb be the diameter of the bounding-box
containing the covered part of the polyline. Defining the relative root mean square error
e =

√
ε/w(s)/dbb jields a value representing the quality of the match which is invariant under

scalings.
The match score or weight w(t) of a transformation t is then defined as w(t) = l/(1 + γ · e)
with γ being an arbitrarily chosen constant for balancing out the impact of the length l and
the error e.

16

2.2.5 Transformation Clustering

The most common technique for the clustering of transformations (often referred to as pose
clustering) – histogramming the transformations in the multidimensional transformation space
(see [13]) – discards the effects on the transformed shapes. Two rotations may yield nearly
the same results if applied to a shape whith its center being the origin, or totally different
results if the shape’s center is far away from the origin. To avoid this imbalance, a distance
measure for transformations is used here, which consideres the shapes’ properties.
Let t1 and t2 be two arbitrary transformations and let S be the transformed shape. The
favoured distance measure would be dS(t1, t2) = maxp∈S ‖t1(p)− t2(p)‖. To reduce the com-
putation costs a surrogat only consideres a discrete set S′ of sample points, e.g. the vertices
of the bounding box of S: d′S(t1, t2) = maxp∈S′ ‖t1(p)− t2(p)‖
Under the assumption that the four points of S′ are pairwise different, this forms a metric
space for affine maps, and independently of the class of allowable transformations the triangle
inequality holds.

So the task is to cluster discrete weighted points in a metric space.

Clusters
A cluster in our sense represents a region of limited diameter, wich subsumes a considerable
amount of weights of the enclosed input points (transformations).

Let Tn be the set of n preliminary transformations and wi be the weight of transforma-
tion ti ∈ Tn. For every transformation tk the set of its dominators in range r is defined
as sr(tk) = tj ∈ Tn|d(tk, tj) < r,wk < wj , sr(tj) = ∅. Every transformation tc which has no
dominators in range rc defines a cluster with radius rc as the set {ti ∈ Tn|d(tc, ti) < rc}, i.e. a
transformation is either assigned to its dominators’ clusters or it defines a cluster itself. The
weight of a cluster is defined as the sum of the weights of its elements. This definition allows
for a fast computation of all clusters and their weights.

Partitioning the Transformation Space
Given the n preliminary transformations Tn and a radius rc for the clusters, a rooted tree
that defines a partition of the transformation space is iteratively built up in the following
way:
A node N on level i represents a ball with radius ri around its center. It may have arbitrarily
many children, each one representing a ball with radius ri+1 = ri/2 and a center that lies
inside N ’s ball. A node may hold a cluster. If so, the node’s center is defined to be the
clusters center. The root node represents a ball with radius r0 containing all elements of
Tn. For every cluster c being inserted into a node representing a ball with radius ri if there
exists (at least one) child node representing a ball containing the center of c, c is recursively
inserted into the first such child. Otherwise a new child holding c with radius ri/2 is created
and appended to the list of child nodes.

Building the Clusters
The preliminary transformations are sorted according to their weight and they are processed
in descending order. Given a transformation t, the tree is searched for all clusters c1, . . . , ck

such that d(tc, t) ≤ rc for the cluster’s center tc. If at least one cluster is found, t is added to
the clusters. Otherwise, a new cluster c with center t is created and inserted into the tree.
The childs of a node are ordered hierarchically, each one only responsible for the part of the

17

space not covered by its predecessors. When a node with center tN and radius r is searched for
clusters neighbouring a transformation t, the distance d(tN , t) is computed. If d(tN , t) < r−rc,
all the clusters worth considering have to lie inside the node’s ball and the successors may be
discarded. If d(tN , t) > r + rc the clusters have to lie outside and the node may be discarded.
In the other cases the node, its successors, and its children have to be considered.

Properties of the Tree
Assuming that the considered space Ti is bounded, i.e. ∃ri ∈ IR : ∀x, y ∈ Ti : d(x, y) < ri.
A subset Ci ⊂ Ti is called an ε-packing iff ∀x, y ∈ Ci : d(x, y) > 2ε. The size of the largest
ε-packing is called the packing number P (Ti, ε). For ε → 0, P (Ti, ε) = O

((
ri
ε

)D) for D being
the dimension of the space [11]. Therefore the maximum number of balls of radius ri/2 with
centers in Ti such that no center is contained in another ball, is in O(2D).
That means that the number of childs a node of the tree may have is bounded by a constant
only depending on the dimension of the transformation space.
The depth of tree is at most dlg(r0/rc)e.

Initial Nodes
The center tN,0 and the radius r0 of the ball represented by the root node may be easily
computed for the classes of transformations that do not allow scalings:
Let cbb1 be the center and dbb1 be the diameter of the bounding box of S1, let cbb2 be the
center and dbb2 be the diameter of the bounding box of S2 respectively. Then tN,0 is chosen
to be the translation defined by cbb2 − cbb1. Any generated preliminary transformation t will
fulfill the condition that the transformed bounding box of S1 at least touches the bounding
box of S2. Therefore dS1(c0, t) ≤ dbb1

2 + dbb2
2 + dbb1 for all accruing transformations.

For the classes of transformations that do allow scalings the space is not bounded in such
a natural way. However, the application provides some other bounds: The goal is to find
transformations that support the human perception. Extreme scalings and shearings may
bring features into congruence, that a human would never be able to perceive.
With a maximum allowable scaling factor smax an appropriate upper bound for the radius is
defined by dS1(c0, t) ≤ dbb1

2 + dbb2
2 + smaxdbb1 for similarity transformations.

2.2.6 Candidate Transformations

After having processed all preliminary transformations, the clusters are sorted according to
their weights. The clusters with the highest weights provide the candidate transformations.
The number of candidate transformations considered may be chosen as a constant or a thresh-
old 0 ≤ u ≤ 1 may be defined to consider only the transformations with weight w ≥ wmax ·u.

2.3 Similarity of matched sets of line segmants or polygonal curves

After having computed transformation that match the shapes, a distance measure has to be
applied to rate the disimilarity (the similarity respectively) of the two shapes. To manage
some of the problems arising when applying the well known Hausdorff distance or Fréchet
distance, a new similarity measure is described here. It...

• averages over the whole polyline / set of polylines so that noise is suppressed

• takes into account the special properties of line segments

18

• is resistent to different parameterization or splitting of polylines

2.3.1 Resemblance Function

The resemblance function is defined for every point of the polylines and stands for how good
the point is represented by the other set. It is composed of the point’s distance to the other
shape’s points and of the similarity of slopes.
Let s be a line segment of S1 with endpoints p0 and p0 + v and let s′ be it’s supporting line.
Let g be a line segment of S2 with endpoints p1 and p2 and let g′ be it’s supporting line.

distance function
If s and g are not orthogonal a distance function δs,g is defined as follows: To every point
p′(λ) = p0 +λv of s′, a point p(λ) of g′ is assigned such that p′(λ) is the orthogonal projection
of p(λ) onto s′. The orthogonal projection of p1 onto s′ is denoted by p′1 = p0 + λ1 · v and its
distance vector is denoted by d1 = p1−p′1. The orthogonal projection of p2 onto s′ is denoted
by p′2 = p0 + λ2 · v. Its distance vector is denoted by d2 = p2 − p′2
The distance vector belonging to p0 = p(0) is the extrapolation d′1 = d2 · (0 − λ1)/(λ2 −
λ1) + d1 · (1 − (0 − λ1)/(λ2 − λ1)) and the distance vector belonging to p0 + v = p(1) is the
extrapolation d′2 = d2 · (1− λ1)/(λ2 − λ1) + d1 · (1− (1− λ1)/(λ2 − λ1)) (see fig. 13).
W.l.o.g. let λ1 < λ2.
The distance function δs,g for this pair of line segments is defined as

δs,g(λ) =


‖d1‖+ ‖(λ− λ1) · v‖ , 0 6 λ < λ1

‖(1− λ) · d′1 + λ · d′2‖ , λ1 6 λ 6 λ2

‖d2‖+ ‖(λ− λ2) · v‖ , λ2 < λ 6 1

Figure 13: definition of the distance between two line segments

inverse distance function
If the distance δs,g(λp) of a point p = p0 + λpv (belonging to line segment s ∈ S1) and the
segment g ∈ S2 equals zero, then p is exactly represented by g – the grade of being represented
therefore is 1. The greater the distance gets, the lesser p is represented by g but the decrease
surely depends on the extent of the shape S1.

In a similar context [8] use a – what they call – inverse distance function for the rating
of transformations in an optimization problem. For their task they chose a function that
exponentially decreases with higher Euclidean distance to value the correspondence of features

19

(see fig. 14a).
In the present case the goal is not to find an optimum, but to rate a given configuration.
Small deviations in the position of the features of the two sets should not result in an excessive
devaluation. Therefore an inversion function with a high (negative) slope around the y-axis
is inapplicable. The function α′s,g(λ) = exp(25(δs,g(λ)/DS1)

2) seems more promising. It rates
pairs with a distance less than 5 % of the diameter very high (over 0.9) and with a distance
of more than 25 % of the diameter very low – around 0.2 (see fig. 14b).
To make the computation easier, the piecewise quadratic function

αs,g(λ) = max(1− 25
(

δs,g(λ)
DS1

)2
, 0)

is chosen. It has the same characteristics for small distances (up to 10 %) but decreases faster
for greater distances (see fig. 14c).

Figure 14: (a) exponentially decreasing inverse distance; (b) inversion function α′; (c) inverse
distance function α

slope
The resemblance of two line segments also depends on their slopes. Line segments with similar
slopes should get a higher resemblance value, so a slope factor βs,g is defined as

βs,g = cos (∠(s, g))4 =
(

〈s, g〉
‖s‖ · ‖g‖

)4

It rates pairs with a difference in slopes of less than 10◦ very high (over 0.9) and with a
difference of more than 45◦ very low (below 0.25). resemblance
The resemblance function φs for a line s is defined as

φs(λ) = max
g∈S2

(αs,g(λ) · βs,g) (1)

The functions α and β are chosen arbitrarily – any monotone function that decreases from
(0, 1) to (1, 0) resp. (π/2, 0) may be utilized – but the two proposed here yield the best results
encountered so far and they allow for a fast computation.

weight
To prevent parts with many parallel lines from dominating over parts with solitary lines, a
weighting function ω is defined analogical to the resemblance function. It rates the density

20

of similar lines of an image. For a line s ∈ S1 it is defined as

ωs(λ) =
1∑

g∈S1
(αs,g(λ) · βs,g)

(2)

2.3.2 Resemblance / Deviation

The directed resemblance measure Φ→(S1, S2) is defined by

Φ→(S1, S2) =

∑
s∈S1

(∫ 1
λ=0 φs(λ) · ωs(λ) dλ · ls

)
Ω(S1)

with ls being the length of s and Ω(S1) being the total weight of S1:
Ω(S1) =

∑
s∈S1

(∫ 1
λ=0 ωs(λ) dλ · ls

)
The undirected resemblance measure Φ(S1, S2) is defined as the weighted arithmetic mean:

Φ(S1, S2) =
Φ→(S1, S2) · Ω(S1) + Φ→(S2, S1) · Ω(S2)

Ω(S1) + Ω(S2)

From this resemblance measure a deviation or distance measure may be derived, but of course
this will never be a metric as the triangle inequality does not hold.

2.3.3 Complexity

The resemblance value is computed evaluating the integrals of a combination of the resem-
blance function and the weighting function for every line segment.
For two sets with n line segments each, the resemblance function – as defined in eq 1 – for
a single line segment is the upper envelope of at most 4 · n + 1 regular (partially defined)
functions. Using quadratic functions, each pair intersects at most 2 times (unless equal).
According to the upper bound on the length of Davenport-Schinzel sequences the complexity
of the upper envelope of the 4 · n + 1 functions is bounded by O(n · 2α(n)) [1] with α being
the inverse Ackermann function.
The weighting function for a single line segment – as defined in eq 2 – is the sum of n func-
tions, each one split into at most 4 regular pieces. The number of intervals for the sum is at
most 3n + 1.

So the overall complexity for all the line segments is bounded by O(n2 · 2α(n)). Two shapes
that yield quadratic complexity can easily be found (see the example in fig. 15).

2.4 Turning function based matching

The turning function ΘA of a polygon A measures the angle of the counterclockwise tangent
with respect to a reference orientation as a function of the arc-length s, measured from
some reference point on the boundary of A. It is a piecewise constant function, with jumps
corresponding to the vertices of A. A rotation of A by an angle θ corresponds to a shifting
of ΘA over a distance θ in the vertical direction. Moving the location of the reference point
A(0) over a distance t along the boundary of A corresponds to shifting ΘA horizontally over
a distance t.

21

Figure 15: shapes with weighting function of complexity O(n2)

The distance between two polygons A and B is defined as the L2 distance between their
two turning functions ΘA and ΘB, minimized with respect to the vertical and horizontal shifts
of these functions (in other words, minimized with respect to rotation and choice of reference
point). More formally, suppose A and B are two polygons with perimeter length lA and lB,
respectively, and the polygon B is placed over A in such a way that the reference point B(0)
of B coincides with point A(t) at distance t along A from the reference point A(0), and B is
rotated clockwise by an angle θ with respect to the reference orientation. A pair (t, θ) will
be referred to as a placement of B over A. The first component t of a placement (t, θ) is also
called a horizontal shift, since it corresponds to a horizontal shifting of ΘA over a distance t,
while the second component θ is also called a vertical shift, since it corresponds to a vertical
shifting of ΘA over a distance θ. We define the quadratic similarity f(A,B, t, θ) between A
and B for a given placement (t, θ) of B over A, as the square of the L2-distance between their
two turning functions ΘA and ΘB:

f(A,B, t, θ) =
∫

(ΘA(s + t)−ΘB(s) + θ)2 d s .

The similarity between two polygons A and B is then given by:

min
(θ,t)

{f(A,B, t, θ)} .

An efficient algorithm to compute this similarity measure is given by Arkin et al. [6]. For
measuring the difference between a polygon and a polyline, or between two polylines, the
same measure can be used with a few slight adaptations.

We have implemented these functions in C++. See for the reference manual in Ap-
pendix B.

References

[1] Pankaj K. Agarwal and Micha Sharir. Davenport-shinzel sequences and their geometric
applications, 1995.

[2] Alberto S. Aguado, Eugenia Montiel, and Mark S. Nixon. Invariant characterisation
of the hough transform for pose estimation of arbitrary shapes. Pattern Recognition,
35:1083–1097, 2002.

22

[3] Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of polygonal
shapes. Annals of Mathematics and Artificial Intelligence, 13:251–265, 1995.

[4] Helmut Alt and Leonidas J. Guibas. Discrete geometric shapes: Matching, interpola-
tion, and approximation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of
computational geometry. Elsiever Science Publishers B.V. North-Holland, Amsterdam,
1999.

[5] Helmut Alt, Günter Rote, Carola Wenk, and Alon Efrat. Matching planar maps. J. of
Algorithms, pages 262–283, 2003.

[6] E. Arkin, P. Chew, D. Huttenlocher, K. Kedem, and J. Mitchell. An efficiently com-
putable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(3):209–215, March 1991.

[7] Fred Attneave. Some informational aspects of visual perception. Psychological Review,
61(3):183–193, 1954.

[8] Harald Ganster Axel Pinz, Manfred Prantl. A robust affine matching algorithm using
an exponentially decreasing distance function. Journal of Universal Computer Science,
1(8):614–631, 1995.

[9] John H. Challis. Estimation of the finite center of rotation in planar movements.

[10] Otfried Cheong, Alon Efrat, and Sariel Har-Peled. On finding a guard that sees most and
a shop that sells most. In Proc. 15th ACM-SIAM Sympos. Discrete Algorithms (SODA),
pages 1091–1100, 2004.

[11] Kenneth L. Clarkson. Nearest-neighbor searching and metric space dimensions, 2005.

[12] Alon Efrat and Suresh Venkatasubramanian. Curve matching, time warping, and light
fields. Technical Report AT&T TD-4z5TMU, AT&T.

[13] Clark f. Olson. Efficient pose clustering using a randomized algorithm. International
Journal of Computer Vision, 23:131–147, 1997.

[14] M. Hagedoorn, M.H. Overmars, and R.C. Veltkamp. A new visibility partition for affine
pattern matching. In Proc. Discrete Geometry for Computer Imagery conference, DGCI
2000, pages 358–370, Berlin, 2000. Springer-Verlag.

[15] M. Hagedoorn and R. Veltkamp. State-of-the-art in shape matching. Technical Report
UU-CS-1999-27, Utrecht University, the Netherlands, 1999.

[16] D. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.
International Journal of Computer Vision, 5(2):195–212, 1990.

[17] Robert C. Bolles Martin A. Fischler. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24:381–395, 1981.

[18] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

23

[19] M. E. Munich and P. Perona. Continuous dynamic time warping for translation-invariant
curve alignment with applications to signature verification. In Proceedings of 7th Inter-
national Conference on Computer Vision, Korfu, Greece, September 1999.

[20] Clark Francis Olson. Fast Object Recognition by Selectively Examining Hypotheses. PhD
thesis, University of California at Berkeley, 1994.

[21] Leonidas J. Guibas Scott D Cohen. Partial matching of planar polylines under similarity
transformations.

[22] George Stockman. Object recognition and localization via pose clustering. Computer
Vision, Graphics, and Image Processing, 40:361–387, 1987.

[23] Remco C. Veltkamp. Shape matching: Similarity measures and algorithms. Technical
Report UU-CS-2001-03, Utrecht University, 2001.

[24] Haim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE Com-
putational Science and Engineering, 04(4):10–21, 1997.

24

A Proofs for probabilistic matching of sets of line segments

Here we give the proofs for the running time of the matching algorithm under translations
described in section 2.1.1. We use the same notation as in section 2.1.1.

A.1 Absolute Error

Let 0 ≤ ε ≤ 1 be a parameter, then for a single translation t ∈ R2 holds:

Lemma A.1. Let S be a sample of N translation vectors and t ∈ R2 a translation, then

P (|p̃(t)− p(t)| > ε) ≤ 2e−
ε2N

2 .

Proof. Let S = {s1, . . . , sN}, consider independent random variables Xi, i = 1..N defined as
Xi = 1 if si is in the δ-neighborhood of t and Xi = 0 else, and a random variable X =

∑N
i=1 Xi,

X = a(t). Expectation value of X is E(X) = Np(t).
Applying Lemma 4.1 in [10] we get P (|X − E(X)| > εN) < e−ε2N/2.

P (|X − E(X)| > εN) = P (|a(t)−Np(t)| > εN) = P (|p̃(t)− p(t)| > ε) < e−ε2N/2.

Consider the arrangement of δ-neighborhoods of the translation vectors of some sample
S. If a translation t is in the δ-neighborhood of the sample vector s, then obviously s is also
in the δ-neighborhood of t. The translations within the same cell of the arrangement have
the same sample vectors of S in their δ-neighborhoods. For the vertices of the arrangement
we have then:

Lemma A.2. Let 0 < ε, η < 1 be parameters, let S be a sample of N ≥
c ln 1

η

ε2 + 2 translation
vectors for a suitable constant c, then

P (∃t ∈ R2 such that |p̃(t)− p(t)| > ε) ≤ η .

Proof. In Lemma A.1 we proved that for any translation vector t in R2 the probability

P (|p̃(t) − p(t)| > ε) ≤ 2e−
ε2N

2 . Here we consider separately the vertices of the arrangement,
since they depend on the experiment.

Let t be a vertex of the arrangement, it is then an intersection point of the boundaries of
two δ-neighborhoods of vectors s1, s2 ∈ S. Consider a sample Q = S \ {s1, s2}, |Q| = N − 2.
Let aQ(t) and aS(t) denote the number of sample vectors in the δ-neighborhood of t in
samples Q and S respectively, and p̃Q(t) = aQ(t)/(N − 2), p̃S(t) = aS(t)/N . If we consider
open neighborhoods, then aQ(t) = aS(t) and

p̃Q(t) =
aQ(t)
N − 2

=
aS(t)
N

N

N − 2
= p̃S(t)

(
1 +

2
N − 2

)
≤ p̃S(t) +

2
N − 2

.

Therefore,

|p̃S(t)− p(t)| ≤ |p̃Q(t)− p(t)|+ |p̃S(t)− p̃Q(t)| ≤ |p̃Q(t)− p(t)|+ 2
N − 2

.

Then,

P (|p̃S(t)− p(t)| > ε) ≤ P

(
|p̃Q(t)− p(t)|+ 2

N − 2
> ε

)
= P

(
|p̃Q(t)− p(t)| > ε− 2

N − 2

)

25

with N ≥
16 ln 1

η

ε2 + 2 ≥ 4
ε + 2 is ε− 2

N−2 ≥
ε
2

≤ P
(
|p̃Q(t)− p(t)| > ε

2

)
(by Lemma A.1)

≤ 2e−
ε2(N−2)

8

The arrangement consists of N (circular or square) δ-neighborhoods and has at most N2

vertices. This implies that the probability that there exists a vertex t such that |p̃S(t)− p(t)| >
ε is at most N22e−

ε2(N−2)
8 .

For sufficiently large N : N22e−
ε2(N−2)

8 ≤ e−
ε2(N−2)

16 , and with N ≥
16 ln 1

η

ε2 +2 the probability
that there exists a vertex of the arrangement that has a bad estimate is at most η.

Let topt be a vector maximizing p(t), t∗ a vertex of the cell of the arrangement contain-
ing topt, and let tapp be a vertex of the arrangement maximizing p̃(t), then we find that

P (|p̃(t∗)− p(topt)| > ε) ≤ 2e−
ε2N

8 , which is less than η for N ≥
c ln 1

η

ε2 + 2. Then with proba-
bility at least 1− η |p̃(tapp)− p(tapp)| ≤ ε and |p̃(t∗)− p(topt)| ≤ ε and

p̃(tapp) ≥ p̃(t∗) ≥ p(topt)− ε and
p̃(tapp) ≤ p(tapp) + ε ≤ p(topt) + ε .

Therefore |p̃(tapp)− p(topt)| ≤ ε with high probability.

Proof. (Of Theorem 2.1)
With linear time preprocessing we can generate a random point of the shape in time O(log n).
That is, the time to generate N random points on both shapes is O(n + N log n). The
arrangement of the δ-neighborhoods of N vectors has the complexity O(N2) and can be
computed and traversed in time O(N2).

A.2 Relative Error

Let 0 < ε, η, ν ≤ 1 be parameters. Then for a single translation we can prove the following
relative error bound:

Lemma A.3. Let S be a sample of size N ≥ c1
ε2ν

ln 2
η , where c1 is a suitable constant. Let

t ∈ R2 be a translation vector, then

• p(t) ≤ ν ⇒ P (p̃(t) > εν) ≤ η

• p(t) ≥ ν ⇒ P (|p̃(t)− p(t)| > εp(t)) ≤ η.

Proof. Let S = {s1, . . . , sN}, consider independent random variables Xi, i = 1..N defined as
Xi = 1 if si is in the δ-neighborhood of t and Xi = 0 else, and a random variable X =

∑N
i=1 Xi,

X = a(t). Expectation value of X is E(X) = Np(t).

26

In case p(t) ≥ ν:

P (|p̃(t)− p(t)| > εp(t)) = P (|a(t)− p(t)N | > εp(t)N)
= P (|X − E(X)| > εE(X))

by the simplified Chernoff bound (Section 4.1 in [18])

≤ e−
ε2E(X)

2 + e−
ε2E(X)

4

≤ 2e−
ε2p(t)N

4 (since p(t) ≥ ν)

≤ 2e−
ε2νN

4

≤ η (with N ≥ 4
ε2ν

ln
2
η
)

If p(t) ≤ ν:

P (p̃(t) > (1 + ε)ν) = P (X > (1 + ε)νN)

<
E(erX)

er(1+ε)νN
(by Markov ineq.)

=
e(et−1)p(t)N

er(1+ε)νN

≤

(
e(et−1)

er(1+ε)

)νN

(since p(t) ≤ ν)

≤
(

eε

(1 + ε)(1+ε)

)νN

(with r = ln(1 + ε))

≤ e−
ε2νN

3 (with 0 < ε < 1)

≤ η

2

Now consider a vertex t of the δ-neighborhood arrangement of S. The following lemma
states estimate bounds for a vertex of the arrangement.

Lemma A.4. Let 0 < ε, η, ν < 1 be parameters, let S be a sample of N ≥
c ln 2

η

ε2ν
+2 translation

vectors for a suitable constant c, and let t ∈ R2 be a vertex of the arrangement of the δ-
neighborhoods of vectors in S, then

• p(t) ≤ ν ⇒ P (p̃(t) > εν) ≤ η

• p(t) ≥ ν ⇒ P (|p̃(t)− p(t)| > εp(t)) ≤ η.

Proof. Let s1, s2 ∈ S be the sample vectors whose δ-neighborhoods intersect in vertex t.
Consider the sample Q = S \ {s1, s2}. As in Lemma A.2 we can argue that

p̃Q(t) ≤ p̃S(t) +
2

N − 2
and

|p̃S(t)− p(t)| ≤ |p̃Q(t)− p(t)|+ 2
N − 2

.

27

In case p(t) ≤ ν

P (p̃S(t) > (1 + ε)ν) ≤ P (p̃Q(t) > (1 + ε)ν) (since p̃S(t) ≤ p̃Q(t))

≤ e−
ε2(N−2)ν

3 (by Lemma A.1)
≤ η

If p(t) ≥ ν:

P (|p̃S(t)− p(t)| > εp(t)) ≤ P

(
|p̃Q(t)− p(t)|+ 2

N − 2
> εp(t)

)
≤ P

(
|p̃Q(t)− p(t)| > ε

2
p(t)

)
(for N ≥ 4

εν)

≤ 2e−
(ε/2)2ν(N−2)

4 (by Lemma A.1)

= 2e−
ε2ν(N−2)

16

≤ η

Since the arrangement of the δ-neighborhoods of sample vectors has at most N2 vertices,

the probability that for any vertex t |p̃(t)− p(t)| > ε is at most N22e−
ε2ν(N−2)

16 , which is at

most e−
ε2ν(N−2)

32 , and is less than η for N ≥
32 ln 1

η

ε2ν
+ 2.

Let A and B be two shapes modeled by sets of line segments of complexity n, and let
DA, DB denote the diameter of A and B respectively. The support of p(t) is T = A⊕−B and
has diameter at most DA+DB. The largest possible area of T is then π(DA+DB)2

4 . If we have a
uniform distribution on T , then for any t ∈ T with distance at least δ from the boundary of T ,
p(t) = 4πδ2

4π(DA+DB)2
= δ2

(DA+DB)2
= ν∗, for circular δ-neighborhood, or p(t) = 4δ2

π(DA+DB)2
= ν∗

for square δ-neighborhood. For an arbitrary probability distribution on T exists at least one
translation vector t with p(t) ≥ ν∗.

Therefore it is sufficient to take a sample S of N ≥
32 ln 1

η

ε2ν∗ + 2 vectors to get an ε-
approximation of p(topt).

Proof. (Of Theorem 2.2)
With linear time preprocessing we can generate a random point of the shape in time O(log n),
then the time to generate N random points on both shapes is O(n+N log n). The arrangement
of the δ-neighborhoods of N vectors has the complexity O(N2) and can be computed and
traversed in time O(N2).

28

turning angle matching polygon polyline

Definition

The function turning angle matching polygon polyline computes how a polyline can be best matched
against a polygon under certain conditions. The function returns how the best match is achieved
and what the distance is at this position. The computed distance is invariant under translation and
rotation of the polygonal chain. The distance measure is based on the work of Arkin et al.[1].

The distance between two polylines is defined by means of the turning angle representation. In this
representation every segment of a polygon is represented by its length and direction. The direction
is measured as the counterclockwise angle with the positive x-axis in radians. This still leaves some
freedom: an angle θ is the same as an angle θ+2π. We restrain the representation further by requiring
that at every discontinuity (that is, at every vertex), the jump is less than π. Below you can see an
example polygon and the associated turning angle representation.

1

2
3

4

5

1

2

3

4

5

Polygon Turning angle representation of the same polygon

The distance between a chain and a polygon is defined in terms of the distance between their turning
angle representations. In the figure below, we see two turning angle representations; one is dotted,
the other one solid. The distance between the two is indicated by the gray area. In fact, we take the
square of the distance between the segments and integrate: d(f, g) =

∫
(f(x)− g(x))2dx, where f and

g are the turning angle representations. In the paper by Arkin et al, the square root of this integral is
taken as the distance.

For computing the distance between the polyline and the polygon, we rotate the polyline and choose
a starting point at the polygon and then compute the distance using the turning angle distance. We
have freedom to choose the starting point and the rotation. We choose them such that the distance is
minimal. If the length of the polygon is less than the length of the chain, the polyline cannot match
the polygon. No distance is computed in that case.

Polygons and polylines can have an orientation. Sometimes we want to take this into account for the
matching, but at other times we don’t. Both are possible; the choice is made with a flag. For instance,
have a look at the polygons below.

1

remcov
Tekstvak
Appendix B Turning function matching manual

2 Function: turning angle matching polygon polyline

The fat part of the boundaries is the same, except for their orientation. They will match perfectly if
we don’t take orientation into account, but badly if we do.

#include <tuan matching.h>

template <class PgnSegmentsIter, class ChainSegmentsIter, class SegmentCvt>
std::pair<Tuan chain info, bool>

turning angle matching polygon polyline(PgnSegmentsIter polygon begin,
PgnSegmentsIter polygon end,
ChainSegmentsIter chain begin,
ChainSegmentsIter chain end,
SegmentCvt segment converter,
bool reversal allowed = false)

• PgnSegmentsIter is an iterator type with value type that we will refer to as Segment1 . You can
choose any type you like for this, but it should represent a segment. The range from polygon begin
to polygon end specifies the segments of the polygon.

• ChainSegmentsIter is an iterator type with value type that we will refer to as Segment2 . You
can choose any type you like for this, for instance the same type as Segment1. The range from
chain begin to chain end specifies the segments of the chain.

• SegmentCvt is the type for a functor that converts a segment to a pair of segment length and
segment angle. The return type must be std::pair<double,double>. It must be able to convert seg-
ments of type Segment1 and of type Segment2 . That is, double pair=segment converter(seg1);
and double pair=segment converter(seg2); should both be valid, if seg1 is of type Segment1 ,
seg2 is of type Segment2 and double pair is a pair of doubles.

• If the parameter reversal allowed is true, the matching will be tried both in the original orien-
tation of the chain and with the chain reversed. The best match is reported.

• The return value is a pair of a Tuan chain info and a bool . The first part gives the distance and
details on how the match is made. See the documentation of the for more information. The
second part states if the match was made in the original orientation (true) or not. The second
part will always be true if reversal allowed was false.

If the polygon has a smaller length than the chain, a negative distance is reported to indicate
that the distance is not well defined.

Example

In this example we present one way of representing polylines and polygons and computing the best
match based on this representation. Keep in mind that this particular representation is just one of
many possible ones. Its main value is that it is concise.

We represent polygons and polylines by means of an array of coordinates (doubles). For polygons we
repeat the first point, that is, the first two coordinates, at the end. This makes it easy to iterate over

Function: turning angle matching polygon polyline 3

the segments. Actually, we will use a vector to store the coordinates. But we make use of it in an
array like fashion.

We define a const segment iterator with the help of the iterator facade of the Boost Iterator library.
A segment iterator points into the array. The member variable m coord1 holds this pointer. The
iterator can be initialised with a pointer into an array or with a vector iterator.

When we move the iterator one step, we move two steps in the array (x and y coordinate). This makes
the previous end vertex the new start vertex. This is implemented in the function increment .

Equality testing is done in the function equal . We test the embedded pointers for equality.

Dereferencing the iterator –implemented by dereference– yields a segment. A segment is represented
by a pointer to an array of 4 coordinates. This is the same pointer as the one stored in the iterator,
but with a different role.

x0. . .y0 x1 y1 x2 y2x0 y0

x0. . .y0 x1 y1 x2 y2x0 y0

In the figure above we see the pointer in both of its roles. The two different positions indicate the
iteration over the segments. The fat box indicates the current segment.

#include <vector>
#include <boost/iterator/iterator_facade.hpp>
#include "boost/tuple/tuple.hpp"

using std::vector;

class const_segment_iterator
: public boost::iterator_facade<

const_segment_iterator
, double const * const // the value type of the iterator
, boost::forward_traversal_tag // make a forward iterator

>
{
public:
const_segment_iterator() : m_coord1(0) {}
explicit const_segment_iterator(double const* p)
: m_coord1(p) {}

explicit const_segment_iterator(vector<double>::const_iterator p)
: m_coord1(&(*p)) {}

private:
friend class boost::iterator_core_access;
// The friend declaration is needed to give iterator_facade access to the
// following private functions.
// The iterator_facade class makes the public iterator interface,
// that is, operator++, operator*, operator-> etc.
void increment() { m_coord1 += 2; }
bool equal(const_segment_iterator const& other) const
{ return this->m_coord1 == other.m_coord1; }

4 Function: turning angle matching polygon polyline

double const * const& dereference() const { return m_coord1; }
double const * m_coord1;

};

class Converter {
public:

std::pair<double,double> operator()(double const * array4) {
return to_tuan_segment_rep(array4[2]-array4[0],array4[3]-array4[1]);

}
};

// MyChain is a very minimal class for representing polygonal chains.
class MyChain {

vector<double> m_rep; // store for the coordinates
public:
// The constructor copies the coordinates of an input range,
// possibly repeating the first point (for closed chains).
template <class Iter>
MyChain(Iter coords_begin, Iter coords_end, bool repeat_first = false)
: m_rep(coords_begin, coords_end)
{

if (repeat_first) {
m_rep.push_back(m_rep[0]);
m_rep.push_back(m_rep[1]);

}
};
const_segment_iterator segments_begin() const
{ return const_segment_iterator(m_rep.begin());}
// The segment iterator is at its end when the last point is reached,
// because a segment needs two points.
// A point has two coordinates, hence the -2.
const_segment_iterator segments_end() const
{ return const_segment_iterator(m_rep.end()-2);}

};

typedef MyChain MyPolygon;

template <class T, size_t N>
T* end(T (&a)[N])
{ return a+N;}

void compute_match(MyPolygon const &pgn, MyChain const &chain)
{

Tuan_chain_info matching_info;
double dist;
boost::tie(matching_info,dist) = tuan_polygon_single_chain_matching(

pgn.segments_begin(), pgn.segments_end(),
chain.segments_begin(),chain.segments_end(),
Converter());

}

void chain_test()
{

double pgn_coords[] = { 0.0,1, 10,0, 10,3.5, 0.9,70, };

Function: turning angle matching polygon polyline 5

double chain_coords[] = { 0,0, 1,3, 6,2.5,};
MyPolygon pgn(pgn_coords, end(pgn_coords),true);
MyChain chain(chain_coords, end(chain_coords));
compute_match(pgn,chain);

}

turning angle matching polygon polylineseq

Definition

The function turning angle matching polygon polylineseq is like the function turning angle matching
polygon polyline, except that it operates on a sequence of polylines instead of a single polyline. The
extension is such that:

• Every chain can be rotated independently of the others.

• The polylines are matched against non overlapping parts of the polygon. Those polygon parts
appear ordered along the polygon in the same order as the polylines in the collection.

• As a consequence, the total length of the polylines must be equal or less than the perimeter of
the polygon.

#include <tuan matching.h>

template <class PgnSegmentsIter, class ChainsIter, class SegmentCvt, class ChainInfoIter>
boost::tuple<double, ChainInfoIter, bool>

turning angle matching polygon polylineseq(PgnSegmentsIter polygon begin,
PgnSegmentsIter polygon end,
ChainsIter chains begin,
ChainsIter chains end,
SegmentCvt segment converter,
ChainInfoIter chain info

output,
bool reversal allowed = false)

• PgnSegmentsIter is an iterator type with value type that we will refer to as Segment1 . You can
choose any type you like for this, but it should represent a segment. The range from polygon begin
to polygon end specifies the segments of the polygon.

• ChainsIter is an iterator type with value type some container of Segment2 . Segment2 can be
any type of your liking. A container must be a container in the sense of the C++standard. At
least it should have member functions begin() and end() and a value type type. Beware, here we
talk about ChainsIter::value type::value type. This value type should be Segment2 .

• SegmentCvt is the type for a functor that can convert a Segment1 and a Segment2 to a pair of
segment length and segment angle. The return type must be std::pair<double,double>.

• ChainsIter is an output iterator type with value type Tuan chain info. Exactly the number of
polylines values will be written to it.

• The return value is a tuple of three elements. See the boost library for a description of tuples.
The first tuple element is a double that gives the total distance. It is the sum of the distances of
the individual polylines. The second tuple element returns the chain info output iterator after
all updates were done. This will point one past the end of the sequence. The third element
indicates if the match was made in the original orientation (true) or the reversed orientation
(false).

6

Function: turning angle matching polygon polylineseq 7

See Also

turning angle matching polygon polyline

Example

The example shown here builds on the example of turning angle matching polygon polyline. We add
a class that is a range of segment iterators, having a begin and end member.

class segment_iter_range {
public:

segment_iter_range(const_segment_iterator begin, const_segment_iterator end)
:m_begin(begin), m_end(end){}
typedef const_segment_iterator::value_type value_type;

typedef const_segment_iterator const_iterator;
typedef const_segment_iterator iterator;

const_segment_iterator const begin() const {return m_begin;}
const_segment_iterator const end() const {return m_end;}

private:
const_segment_iterator m_begin, m_end;

};

void compute_distance(MyPolygon const &pgn, vector<segment_iter_range> const &chains)
{

using boost::tuples::ignore;
vector<Tuan_chain_info> matching_info(chains.size());
double dist;
boost::tie(dist, ignore, ignore)=

tuan_polygon_chains_matching(pgn.segments_begin(), pgn.segments_end(),
chains.begin(),chains.end(), Converter(), matching_info.begin());

}

void chains_test()
{

double pgn_coords[] = { 0.0,1,10,0,10,3.5,0.9,70, };
double chain_coords1[] = { 0,0,1,3,6,2.5,};
double chain_coords2[] = {0,0, 0,30, 1,30, };
MyPolygon pgn(pgn_coords, end(pgn_coords),true);
MyChain chain1(chain_coords1, end(chain_coords1));
MyChain chain2(chain_coords2, end(chain_coords2));
vector<segment_iter_range> chains;
chains.push_back(segment_iter_range(chain1.segments_begin(), chain1.segments_end()));
chains.push_back(segment_iter_range(chain2.segments_begin(), chain2.segments_end()));
compute_distance(pgn,chains);

}

to tuan segment rep

Definition

The function to tuan segment rep is a utility function that can aid in converting a custom represen-
tation of a segment to a turning angle representation.

#include <tuan matching.h>

std::pair<double,double>

to tuan segment rep(double dx, double dy)

Example

In this example we show a converter that can convert a segment in two representations to the turning
angle representation. The first representation is an explicit representation of segments in a class, where
the coordinates are integers. In the second representation, the coordinates are doubles in an array.
The first array elements are the x and y coordinate of the begin point, the next two elements are the
x and y coordinate of the end point of the segment.

#include "tuan_matching.h"

struct IntPoint
{ int x,y; };

struct IntSegment
{ IntPoint start, end;};

class MyConverter {
public:

std::pair<double,double> operator()(IntSegment const &seg) {
return to_tuan_segment_rep(seg.end.x-seg.start.x,seg.end.y-seg.start.y);

}
std::pair<double,double> operator()(double const *segp) {

return to_tuan_segment_rep(segp[2]-segp[0], segp[3]-segp[1]);
}

};

void convert_test()
{

IntSegment seg1;
seg1.start.x = 3;
seg1.start.y = 1;
seg1.end.x = 6;
seg1.end.y = 5;
double seg2[] = {3.0,1.0,6.0,5.0};
MyConverter converter;
std::pair<double,double> turnrep1 = converter(seg1);
std::pair<double,double> turnrep2 = converter(seg2);

}

8

Tuan chain info

Definition

The class Tuan chain info holds information how a chain is matched.

#include <tuan matching.h>

Creation

Tuan chain info ci ; default constructor.

Query Functions

double ci .distance() Distance contributed by this chain to total distance. It is
the distance of the chain, rotated over matching angle(),
to the part of the polygon perimeter between matching
start() and matching end().

double ci .matching angle()

Counterclockwise angle over which the chain is rotated
to get the match. The angle is in radians.

void ci.matching start(std::size t &segment index, double &segment ratio)

Indicates what part of the polygon is matched. The
start of the chain is matched to a point on segment
segment index of the input. The segment ratio indi-
cates the exact point on the segment. It ranges from 0
(inclusive) to 1 (not inclusive). The value 0 indicates
the start of the segment, the value 1 indicates the end
of the segment. Other values are linearly interpolated.

void ci.matching end(std::size t &segment index, double &segment ratio)

Describes where the point matching the end point of the
chain is located on the polygon.

See Also

tuan polygon chains matching , tuan polygon single chain matching .

9

10 Class:

Bibliography

[1] Esther M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and Joseph S. B. Mitchell. An
efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 13(3):209–216, 1991.

11

