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1 Introduction

In this work package we develop algorithms for matching parts of two planar shapes. We
assume that shapes are modeled by sets of plane polygonal curves (or sets of line segments).
As possible classes of transformations we will consider translations, rigid motions (i.e., trans-
lations and rotations) and similarities (i.e., translations, rotations and scalings).

The general situation is that we are given two objects A and B and a set T of allowable
transformations and we want to transform B optimally so that the transformed image of B,
or some part of it, is as close to A, or a part of A, as possible. Usually the quality of match is
measured by some distance function or similarity measure δ(A,B) which assigns a number to
any pair of objects A and B. We call the problem addressed in work package four of optimal
matching of the complete shape B to the complete shape A a complete-complete matching
(CCM). In this work package we consider the problem of complete-partial matching (CPM),
i.e., matching B completely as good as possible to some part of A, and partial-partial matching
(PPM), i.e. matching some part of B as good as possible to some part of A. Clearly, CPM
and PPM are not uniquely specified since there is a tradeoff between the quality of the match
and the size of the parts that match. Which of the two criteria is more important, depends
on the application. In case of trademarks we expect partial-partial matching, where the parts
are “not too small” and the quality of match is “fairly good”, to depict best the perceptual
similarity.

Several similarity measures and algorithms are known to match two curves, especially
polygonal curves, see [2, 3] for surveys or the deliverable report 4.1 for a short overview.
Some of these similarity measures can be modified to valuate partial match, e.g. percentile-
based Hausdorff distance [2].

The probabilistic method described in deliverable report 4.1 is applicable for the partial
matching problem as well. Furthermore, if there are several parts of the shape B that match
some parts of A under different transformations all those transformation would be found
among the candidate transformations determined by the probabilistic algorithm.

2 Results

2.1 Probabilistic partial matching of sets of line segments

Given two sets A,B ⊂ R2 consisting of all points lying on a finite set of polygonal curves (or,
equivalently, line segments). Find that transformation t, which lets parts of the transformed
image of B, t(B), match best A, i.e. puts the most similar parts of the shapes A and B on
top of each other. As sets of allowed transformations we consider translations, rigid motions,
that is translations and rotations, and similarities, i.e. translations, scalings and rotations.
These transformation spaces are two-, three- and four-dimensional respectively.

The algorithm described in report 4.1 is quite simple:

1. Take an appropriate random sample SA of A and a random sample SB of B, and give
one “vote” to the transformation t, which maps SB to SA.

2. Repeat this experiment many times. Then the distribution of votes in the transforma-
tion space T approximates a certain probability distribution.

3. For a given neighborhood size δ take the points of T with the highest number of sampling
points in their δ-neighborhood as candidates for good transformations.
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The size of the random sample depends on the allowed transformations. For translations it
contains one point: SA = {a} ⊂ A, SB = {b} ⊂ B, and the corresponding translation is
t = a− b. The points are selected randomly under uniform distribution as described in report
4.1.

A rigid motion is uniquely defined by a point-vector pair, therefore each random sample
contains a point of a shape and a unit length direction vector: SA =

{
(a, da) : a ∈ A, da ∈ R2

}
,

SB =
{
(b, db) : b ∈ B, db ∈ R2

}
. The sampling points are selected randomly and the direction

vector is a kind of approximation of a tangent at the sampling point. Several methods of
selecting a direction vector are discussed in report 4.1. The corresponding rigid motion is
defined by a rotation α, that maps the vector db to da, and a translation a− α(b) that maps
a rotated point b to the point a.

For similarity maps random samples contain each two points of the corresponding shapes:
SA = {a1, a2} ⊂ A and SB = {b1, b2} ⊂ B, which define uniquely a similarity map s such
that s(b1) = a1 and s(b2) = a2.

The analysis of the probability distribution and the error bounds on the approximation
of the distribution in the case of translations can be found in report 4.1. Here we describe
the application of this probabilistic method to the partial matching problem. Let p(t) denote
the probability distribution of a δ-neighborhood of transformation t. This probability value
is estimated in our algorithm by the ratio of sampling points in the δ-neighborhood of the
transformation t to the total number of sampling points. As discussed in the report 4.1 the
value p(t) is proportional to the size of the parts of the shapes A and B brought by the
transformation t into the δ-neighborhood of each other.

The choice of δ controls the quality of the match. If we want to find nearly congruent
parts in two figures, we should use a small value of δ, and if a rough match is wanted a larger
value of δ gives the desired results. Furthermore, we should examine several local maxima
of the p(t) function, since each of the maxima corresponds to a partial match between two
figures. For each of the candidate transformations we then can determine which parts of the
two shapes match and how large these parts are.

This step can be performed using the directed Hausdorff distance. The directed Hausdorff
distance from a compact set B to a compact set A assigns to every point in B the distance
to its nearest neighbor in A and takes maximum over all such distances. For the sets of line
segments in the plane an O(n log n) algorithm for computing the Hausdorff distance is given
in [1], where n is the number of segments in the sets.

Then we can incrementally take the segments of the shape B into the matched set if the
directed Hausdorff distance from the matched subset of B to A stays under the chosen value
δ. Using the algorithm from [1] we can perform this verification step in time O((n+m) log(n+
m)), where n and m are the number of segments in A and B, respectively. Alternatively we
can use the similarity measure proposed in the next section in a similar way. In this case the
verification step takes O(nm) time.

As we mentioned above the problem of partial-partial matching is not uniquely defined
since there is a certain correlation between the quality of match and the size of the matched
parts. We address this problem by letting the user specify the quality of match through the
choice of δ, for which we then find the matching parts. After the verification step we can
report the actual similarity in case it is better than the predefined.

Figure 1 shows an example where there are two good positions for the shape B correspond-
ing to a complete-partial match. Both of those positions correspond to a local maximum of
the distribution in the translation plane. Of course, there are more than two local maxima,
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so we should consider them up to a certain threshold, e.g. up to 50% of the largest value.

Figure 1: Top: two superimpositions of the figures each corresponding to a complete-partial
match. Bottom: Experimental distribution in the translation space with two local maxima
marked and a 3d-view of the distribution.

Another example of a complete-partial matching is shown in Figure 2. Here the super-
imposition of the horse shape in figure B with the part of the shape A depicting a horse
corresponds to a single significant local maximum of the probability distribution in the trans-
lation plane.

2.2 Probabilistic partial matching of sets of polygonal curves

The heuristic computing optimal transformations for finite ordered sets of polyline vertices
as described in report 4.1 is not limited to complete-complete matching. Since it exploits the
local congruity of features, the algorithm may easily be applied to complete-partial matching
and partial-partial matching.

The transformations are computed based on (local) subsets of vertices. If there exist one
or more parts that have a similar counterpart, the transformations computed for these parts
will form clusters that yield candidate transformations.

As described for the complete-complete matching, for S1 and S2 being sets of polylines, a
vertex p1,0 of a polyline P1 ∈ S1 and a vertex p2,0 of a polyline P2 ∈ S2 are randomly chosen
in every step. Beginning with these seed vertices an ordered set P̃1 ⊆ P1 and an ordered set
P̃2 ⊆ P2 of vertices or vertex surrogates are generated.

For both polylines starting from the last vertex added to P̃ the distance to the next vertex
is computed. If the difference of the distances lies below a certain threshold, both vertices
are added, otherwise for the vertex with smaller distance a corresponding vertex surrogate
with the same distance is created on the other polyline and this pair is added. For every
cardinality m̃ of the P̃ s the transformation t is computed, such that ε =

∑m̃
i=1 ‖t(p1,i)− p2,i‖2

is minimized. The transformation’s weight is composed of the length of the covered part of
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Figure 2: Top: two shapes and the superimposition found by the probabilistic algorithm. Bot-
tom: the corresponding probability distribution in the translation plane with one significant
maximum.

the polyline and the error ε. For every step the transformation t with the highest weight is
handed over to the clustering algorithm.

If no complete-complete matching exists, the portions of the polylines matched will be
smaller, but still the largest clusters will represent parts that do match.

2.3 Partial similarity of matched sets of line segments or polygonal curves

There is no need to change the resemblance function as described in report 4.1 - only the
appraisal has to be adjusted.

The resemblance function φs for a line s is defined as

φs(λ) = maxg∈S2 (αs,g(λ) · βs,g)

with α being the distance factor and β being the slope factor as defined for the complete-
complete matching case.
The weighting function ω (to prevent parts with many parallel lines from dominating over
parts with solitary lines) is defined analogical to the resemblance function:

ωs(λ) =
1∑

g∈S1
(αs,g(λ) · βs,g)

The directed resemblance measure Φ→(S1, S2) is defined by

Φ→(S1, S2) =

∑
s∈S1

(∫ 1
λ=0 φs(λ) · ωs(λ) dλ · ls

)
Ω(S1)

with ls being the length of s and Ω(S1) being the total weight of S1:
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Ω(S1) =
∑

s∈S1

(∫ 1
λ=0 ωs(λ) dλ · ls

)
The undirected resemblance measure Φ(S1, S2) is defined as the weighted arithmetic mean:

Φ(S1, S2) =
Φ→(S1, S2) · Ω(S1) + Φ→(S2, S1) · Ω(S2)

Ω(S1) + Ω(S2)

The value of the undirected resemblance measure for two shapes that have a slight similarity
– for the whole shape – may be as large as the value of the resemblance measure for two
shapes that have parts resembling each other as well as parts that differ much from each
other. Depending on a threshold for the value of φ, these parts may be distinguished and the
resemblance measure computed for the parts with high weight. The more subtle task is to
decide whether these parts form an expressive subshape that has been recognized – a match
in the PPM / CPM sense – or if they are just independent and do not induce a perceptually
relevant resemblance.

2.4 Turning function based matching

We have introduced a measure for computing the similarity between multiple polylines and
a polygon, see figure 3. The polylines could for example be pieces of an object contour
incompletely extracted from an image, or could be boundary parts in a decomposition of an
object contour. The measure we propose is based on the turning function representation of the
polylines and the polygon. This similarity measure is a turning angle function-based similarity,
minimized over all possible shiftings of the endpoints of the parts over the shape, and also
over all independent rotations of the parts. Since we allow the parts to rotate independently,
this measure could capture the similarity between contours of non-rigid objects, with parts in
different relative positions. We then derive a number of non-trivial properties of the similarity
measure.

Figure 3: Matching an ordered set {P1, P2, P3} of polylines against a polygon P .

Based on these properties we characterize the optimal solution that leads to a straightfor-
ward O(km2n2)-time and space dynamic programming algorithm using O(km2n2) storage.
We then present a novel O(kmn log(mn)) time and space algorithm using O(kmn log(mn))
storage. Here, m denotes the number of vertices in the polygon, and n is the total number
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of vertices in the k polylines that are matched against the polygon. For more details see
Appendix A Multiple Polyline to Polygon Matching.

We have experimented with a part-based retrieval application. Given a large collection of
shapes and a query consisting of a set of polylines, we want to retrieve those shapes in the
collection that best match our query. The set of polylines forming the query are boundary
parts in a decomposition of a database shape – both this database shape and the parts in the
query are selected by the user. The evaluation using a known ground-truth indicates that
a part-based approach improves the global matching performance for difficult categories of
shapes. For more details, see Appendix B Part-based Shape Retrieval.

3 Conclusions

Our experiments showed that the probabilistic matching algorithms can be applied to the
problem of partial matching with satisfactory results. Nevertheless, we believe that some
modifications of the algorithms could be quite helpful to meet the needs of the partial matching
problem. Therefore, we decided to add such modifications to the implementation we are
currently working on.

On the one hand, we are modifying the matching algorithms to record which parts of the
given shapes are actually matched by the resulting transformation. On the other hand, the
valuation function, which returns a value indicating the quality of match, could be modified
in order to weight stronger the parts of the two shapes that match, and to ignore or give a
smaller weight to the unmatched parts. There is a certain trade-off between the quality of the
match and the size of the matched parts, which has to be reflected by the valuation function.
In general, depending on the algorithm parameters, we can have a precise match of small
parts, or a more rough match of the larger parts of the shapes. Which outcome is desired
depends highly on the application and is therefore best controlled by the user. Similarly, it
is a difficult task to decide to which extent the unmatched parts should affect the valuation
function. We continue the experimental evaluation in order to find a good combination for
the valuation function for the problem of trademark image matching.

We are also working on determining automatically the best parameter value δ controlling
the trade-off between the quality and the size of match. For this purpose we analyze the
valuation function as a function of parameter δ.

After having implemented these ideas, we expect to obtain reasonable results for the
application of recognizing similarities in trademarks. Further experiments are planned for
the fine-tuning the methods for this particular application.
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Multiple Polyline to Polygon Matching
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Abstract. We introduce a measure for computing the similarity be-
tween multiple polylines and a polygon, that can be computed in
O(km2n2) time with a straightforward dynamic programming algorithm.
We then present a novel fast algorithm that runs in time O(kmn log mn).
Here, m denotes the number of vertices in the polygon, and n is the total
number of vertices in the k polylines that are matched against the poly-
gon. The effectiveness of the similarity measure has been demonstrated
in a part-based retrieval application with known ground-truth.

1 Introduction

The motivation for multiple polyline to polygon matching is twofold. Firstly, the
matching of shapes has been done mostly by comparing them as a whole [2,8,10].
This fails when a significant part of one shape is occluded, or distorted by noise.
In this paper, we address the partial shape matching problem, matching portions
of two given shapes. Secondly, partial matching helps identifying similarities
even when a significant portion of one shape boundary is occluded, or seriously
distorted. It could also help in identifying similarities between contours of a non-
rigid object in different configurations of its moving parts, like the contours of a
sitting and a walking cat. Finally, partial matching helps alleviating the problem
of unreliable object segmentation from images, over or undersegmentation, giving
only partially correct contours.

Contribution. Firstly, we introduce a measure for computing the similarity
between multiple polylines and a polygon. This similarity measure is a turning
angle function-based similarity, minimized over all possible shiftings of the end-
points of the parts over the shape, and also over all independent rotations of
the parts. Since we allow the parts to rotate independently, this measure could
capture the similarity between contours of non-rigid objects, with parts in dif-
ferent relative positions. We then derive a number of non-trivial properties of
the similarity measure.

Secondly, based on these properties we characterize the optimal solution that
leads to a straightforward O(km2n2)-time and space dynamic programming algo-
rithm. We then present a novel O(kmn log mn) time and space algorithm. Here,
m denotes the number of vertices in the polygon, and n is the total number of
vertices in the k polylines that are matched against the polygon.

Thirdly, we have experimented with a part-based retrieval application. Given
a large collection of shapes and a query consisting of a set of polylines, we want to

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 60–70, 2005.
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retrieve those shapes in the collection that best match our query. The evaluation
using a known ground-truth indicates that a part-based approach improves the
global matching performance for difficult categories of shapes.

2 Related Work

Arkin et al. [2] describe a metric for comparing two whole polygons that is
invariant under translation, rotation and scaling. It is based on the L2-distance
between the turning functions of the two polygons, and can be computed in
O(mn log mn) time, where m is the number of vertices in one polygon and n is
the number of vertices in the other.

Most partial shape matching methods are based on computing local features
of the contour, and then looking for correspondences between the features of the
two shapes, for example points of high curvature [1,7]. Such local features-based
solutions work well when the matched subparts are almost equivalent up to a
transformation such as translation, rotation or scaling, because for such subparts
the sequences of local features are very similar. However, parts that we perceive
as similar, may have quite different local features (different number of curvature
extrema for example).

Geometric hashing [12] is a method that determines if there is a transformed
subset of the query point set that matches a subset of a target point set, by
building a hash table in transformation space. Also the Hausdorff distance [5]
allows partial matching. It is defined for arbitrary non-empty bounded and closed
sets A and B as the infimum of the distance of the points in A to B and the
points in B to A. Both methods are designed for partial matching, but do not
easily transform to our case of matching multiple polylines to a polygon.

Partially matching the turning angle function of two polylines under scaling,
translation and rotation, can be done in time O(m2n2) [4]. Given two matches
with the same squared error, the match involving the longer part of the polylines
has a lower dissimilarity. The dissimilarity measure is a function of the scale,
rotation, and the shift of one polyline along the other. However, this works for
only two single polylines.

Latecki et al [6], establish the best correspondence of parts in a decomposition
of the matched shapes. The best correspondence between the maximal convex
arcs of two simplified versions of the original shapes gives the partial similarity
measure between the shapes. One drawback of this approach is that the matching
is done between parts of simplified shapes at “the appropriate evolution stage”.
How these evolution stages are identified is not indicated in their papers, though
it certainly has an effect on the quality of the matching process.

3 Polylines-to-Polygon Matching

We concentrate on the problem of matching an ordered set {P1, P2, . . . , Pk} of
k polylines against a polygon P . We want to compute how close an ordered set
of polylines {P1, P2, . . . , Pk} is to being part of the boundary of P in the given



62 M. Tănase, R.C. Veltkamp, and H. Haverkort
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Fig. 1. Matching an ordered set {P1, P2, P3} of polylines against a polygon P

order in counter-clockwise direction around P (see figure 1). For this purpose,
the polylines are rotated and shifted along the polygon P , in such a way that the
pieces of the boundary of P “covered” by the k polylines are mutually disjoint
except possibly at their endpoints. Note that P is a polygon and not an open
polyline, only because of the intended application of part based retrieval.

3.1 Similarity Between Multiple Polylines and a Polygon

The turning function ΘA of a polygon A measures the angle of the counter-
clockwise tangent with respect to a reference orientation as a function of the
arc-length s, measured from some reference point on the boundary of A. It is a
piecewise constant function, with jumps corresponding to the vertices of A. A
rotation of A by an angle θ corresponds to a shifting of ΘA over a distance θ in
the vertical direction. Moving the location of the reference point A(0) over a dis-
tance t ∈ [0, lA) along the boundary of A corresponds to shifting ΘA horizontally
over a distance t.

Let Θ : [0, l] → R be the turning function of a polygon P of m vertices, and
of perimeter length l. Since P is a closed polyline, the domain of Θ can be easily
extended to the entire real line, by Θ(s + l) = Θ(s) + 2π. Let {P1, P2, . . . Pk}
be a set of polylines, and let Θj : [0, lj] → R denote the turning function of the
polyline Pj of length lj . If Pj is made of nj segments, Θj is piecewise-constant
with nj − 1 jumps.

For simplicity of exposition, fj(t, θ) denotes the quadratic similarity between
the polyline Pj and the polygon P , for a given placement (t, θ) of Pj over P :
fj(t, θ) =

∫ lj
0

(Θ(s + t) − Θj(s) + θ)2ds.

We assume the polylines {P1, P2, . . . , Pk} satisfy the condition
∑k

j=1 lj ≤ l.
The similarity measure, which we denote by d(P1, . . . , Pk; P ), is the square root
of the sum of quadratic similarities fj , minimized over all valid placements of
P1, . . . , Pk over P :

d(P1, . . . , Pk; P ) = min
valid placements
(t1, θ1) . . . (tk, θk)

⎛

⎝
k∑

j=1

fj(tj , θj)

⎞

⎠

1/2

.
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l 2l

Θ

t1 t1 + l1

Θ1

t2 t2 + l2

Θ2

t3 t3 + l3 < t1 + l

Θ3

Fig. 2. To compute d(P1, . . . , Pk; P ) between the polylines P1, . . . , P3 and the polygon
P , we shift the turning functions Θ1, Θ2, and Θ3 horizontally and vertically over Θ

It remains to define what the valid placements are. The horizontal shifts
t1, . . . , tk correspond to shiftings of the starting points of the polylines P1, . . . , Pk

along P . We require that the starting points of P1, . . . , Pk are matched with
points on the boundary of P in counterclockwise order around P , that is: tj−1 ≤
tj for all 1 < j ≤ k, and tk ≤ t1 + l. Furthermore, we require that the matched
parts are disjoint (except possibly at their endpoints), sharpening the constraints
to tj−1 + lj−1 ≤ tj for all 1 < j ≤ k, and tk + lk ≤ t1 + l (see figure 2).

The vertical shifts θ1, . . . , θk correspond to rotations of the polylines P1,
. . . , Pk with respect to the reference orientation, and are independent of each
other. Therefore, in an optimal placement the quadratic similarity between a
particular polyline Pj and P depends only on the horizontal shift tj , while the
vertical shift must be optimal for the given horizontal shift. We can thus express
the similarity between Pj and P for a given positioning tj of the starting point
of Pj over P as: f∗j (tj) = minθ∈R fj(tj , θ).

The similarity between the polylines P1, . . . , Pk and the polygon P is thus:

d(P1, . . . , Pk; P ) = min
t1∈[0,l), t2,...,tk∈[0,2l);

∀j∈{2,...,k}: tj−1+lj−1≤tj ; tk+lk≤t1+l

⎛

⎝
k∑

j=1

f∗j (tj)

⎞

⎠

1/2

. (1)

3.2 Properties of the Similarity Function

In this section we give a few properties of f∗j (t), as functions of t, that constitute
the basis of the algorithms for computing d(P1, . . . , Pk; P ) in sections 3.3 and 3.4.
We also give a simpler formulation of the optimization problem in the definition
of d(P1, . . . , Pk; P ). Arkin et al. [2] have shown that for any fixed t, the function
fj(t, θ) is a quadratic convex function of θ. This implies that for a given t, the
optimization problem minθ∈R fj(t, θ) has a unique solution, given by the root
θ∗j (t) of the equation ∂fj(t, θ)/∂θ = 0. As a result:

Lemma 1. For a given positioning t of the starting point of Pj over P , the
rotation that minimizes the quadratic similarity between Pj and P is given by
θ∗j (t) = −

∫ lj
0 (Θ(s + t) − Θj(s))ds/lj .
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We now consider the properties of f∗j (t) = fj(t, θ∗j (t)), as a function of t.

Lemma 2. The quadratic similarity f∗j (t) has the following properties:
i) it is periodic, with period l;
ii) it is piecewise quadratic, with mnj breakpoints within any interval of length

l; moreover, the parabolic pieces are concave.

For a proof of this and the following lemmas, see [11].
The following corollary indicates that to compute the minimum of the function

f∗j , we need to look only a discrete set of at most mnj points.

Corollary 1. The local minima of the function f∗j are among the breakpoints
between its parabolic pieces.

We now give a simpler formulation of the optimization problem in the defini-
tion of d(P1, . . . , Pk; P ). In order to simplify the restrictions on tj in equation (1),

we define: fj(t) := f∗j
(
t +
∑j−1

i=1 li

)
. In other words, the function fj is a copy of

f∗j , but shifted to the left with
∑j−1

i=1 li. Obviously, fj has the same properties as
f∗j , that is: it is a piecewise quadratic function of t that has its local minima in at
most mnj breakpoints in any interval of length l. With this simple transforma-
tion of the set of functions f∗j , the optimization problem defining d(P1, . . . , Pk; P )
becomes:

d(P1, . . . , Pk; P ) = min
t1∈[0,l), t2,...,tk∈[0,2l);

∀j∈{2,...,k}: tj−1≤tj ; tk≤t1+l0

⎛

⎝
k∑

j=1

fj(tj)

⎞

⎠

1/2

, (2)

where l0 := l−
∑k

i=1 li. Notice that if (t∗1, . . . , t
∗
k) is a solution to the optimization

problem in equation (2), then (t∗1, . . . , t
∗
k), with t∗j := t

∗
j +

∑j−1
i=1 li, is a solution

to the optimization problem in equation (1).

3.3 Characterization of an Optimal Solution

In this section we characterize the structure of an optimal solution to the opti-
mization problem in equation (2), and give a recursive definition of this solution.
This definition forms the basis of a straightforward dynamic programming solu-
tion to the problem.

Let (t∗1, . . . , t
∗
k) be a solution to the optimization problem in equation (2).

Lemma 3. The values of an optimal solution (t∗1, . . . , t
∗
k) are found in a discrete

set of points X ⊂ [0, 2l) of the breakpoints of the functions f1, ..., fk, plus two
copies of each breakpoint: one shifted left by l0 and one shifted right by l0.

We call a point in [0, 2l), which is either a breakpoint of f1, ..., fk, or such a
breakpoint shifted left or right by l0, a critical point. Since function fj has 2mnj

breakpoints, the total number of critical points in [0, 2l) is at most 6m
∑k

i=1 ni =
6mn. Let X = {x0, . . . , xN−1} be the set of critical points in [0, 2l).
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With the observations above, the optimization problem we have to solve is:

d(P1, . . . , Pk; P ) = min
t1, . . . , tk ∈ X

∀j > 1 : tj−1 ≤ tj ; tk − t1 ≤ l0

⎛

⎝
k∑

j=1

fj(tj)

⎞

⎠

1/2

. (3)

We denote: D[j, a, b] = min
t1, . . . , tj ∈ X

xa ≤ t1 ≤ . . . ≤ tj ≤ xb

j∑

i=1

fi(ti) , (4)

where j ∈ {1, . . . , k}, a, b ∈ {0, . . . , N − 1}, and a ≤ b. Equation (4) describes
the subproblem of matching the set {P1, . . . , Pj} of j polylines to a subchain of
P , starting at P (xa) and ending at P (xb +

∑j
i=1 li). We now show that D[j, a, b]

can be computed recursively. Let (t�1 , . . . t�j ) be an optimal solution for D[j, a, b].
Regarding the value of t�j we distinguish two cases:

– t�j = xb, in which case (t�1 , . . . t�j−1) must be an optimal solution for D[j −
1, a, b], otherwise (t�1 , . . . t�j ) would not give a minimum for D[j, a, b]; thus
in this case, D[j, a, b] = D[j − 1, a, b] + fj(xb);

– t�j �= xb, in which case (t�1 , . . . t�j ) must be an optimal solution for D[j, a, b−
1]; otherwise (t�1 , . . . t�j ) would not give a minimum for D[j, a, b]; thus in this
case D[j, a, b] = D[j, a, b − 1].

We can now conclude that :

D[j, a, b] = min
(
D[j − 1, a, b] + fj(xb), D[j, a, b − 1]

)
, for j ≥ 1 ∧ a ≤ b, (5)

where the boundary cases are D[0, a, b] = 0 and D[j, a, a − 1] has no solution.
A solution of the optimization problem (3) is then given by

d(P1, . . . , Pk; P ) = min
xa,xb∈X, xb−xa≤l0

√
D[k, a, b] . (6)

Equations (5) and (6) lead to a straightforward dynamic programming algo-
rithm for computing the similarity measure d(P1, . . . , Pk; P ) in O(km2n2) time.

3.4 A Fast Algorithm

The above time bound to computate of the similarity measure d(P1, . . . , Pk; P )
can be improved to O(kmn log mn). The refinement of the dynamic programming
algorithm is based on the following property of equation (5):

Lemma 4. For any polyline Pj, j ∈ {1, . . . , k}, and any critical point xb, b ∈
{0, . . . , N − 1}, there is a critical point xz, 0 ≤ z ≤ b, such that:

i) D[j, a, b] = D[j, a, b − 1], for all a ∈ {0, ..., z − 1}, and
ii) D[j, a, b] = D[j − 1, a, b] + fj(xb), for all a ∈ {z, ..., b}.
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For given j and b, we consider the function D[j, b] : {0, N − 1} → R, with
D[j, b](a) = D[j, a, b]. Lemma 4 expresses the fact that the values of function
D[j, b] can be obtained from D[j, b − 1] up to some value z, and from D[j − 1, b]
(while adding fj(xb)) from this value onwards. This property allows us to improve
the time bound of the dynamic programming algorithm. Instead of computing
arrays of scalars D[j, a, b], we will compute arrays of functions D[j, b]. The key
to success will be to represent these functions in such a way that they can be
evaluated fast and D[j, b] can be constructed from D[j−1, b] and D[j, b−1] fast.

Algorithm FastCompute d(P1, . . . , Pk; P )
1. Compute the set of critical points X = {x0, . . . , xN−1}, and sort them

2. For all j ∈ {1, ..., k} and all b ∈ {0, ..., N − 1}, evaluate fj(xb)

3. ZERO ← a function that always evaluates to zero (see Lemma 5)

4. INFINITY ← a function that always evaluates to ∞ (see Lemma 5)

5. MIN ←∞
6. a← 0

7. for j ← 1 to k do

8. D[j,−1]← INFINITY

9. for b← 0 to N − 1 do

10. D[0, b]← ZERO

11. for j ← 1 to k do

12. Construct D[j, b] from D[j − 1, b] and D[j, b− 1]

13. while xa < xb − l0 do

14. a← a + 1

15. val← evaluation of D[k, b](a)

16. MIN ← min (val, MIN )

17. return
√

MIN

The running time of this algorithm depends on how the functions D[j, b] are
represented. In order to make especially steps 12 and 15 of the above algorithm
efficient, we represent the functions D[j, b] by means of balanced binary trees.
Asano et al. [3] used an idea similar in spirit.

An efficient representation for function D[j, b]. We now describe the tree
Tj,b used for storing the function D[j, b]. Each node ν of Tj,b is associated with
an interval [a−

ν , a+
ν ], with 0 ≤ a−

ν ≤ a+
ν ≤ N − 1. The root ρ is associated with

the full domain, that is: a−
ρ = 0 and a+

ρ = N − 1. Each node ν with a−
ν < a+

ν is
an internal node that has a split value aν = �(a−

ν +a+
ν )/2	 associated with it. Its

left and right children are associated with [a−
ν , aν ] and [aν + 1, a+

ν ], respectively.
Each node ν with a−

ν = a+
ν is a leaf of the tree, with aν = a−

ν = a+
ν . For any

index a of a critical point xa, we will denote the leaf ν that has aν = a by λa.
Note that so far, the tree looks exactly the same for each function D[j, b]: they
are balanced binary trees with N leaves, and log N height. Moreover, all trees
have the same associated intervals, and split values in their corresponding nodes.
With each node ν we also store a weight wν , such that Tj,b has the following
property: D[j, b](a) is the sum of the weights on the path from the tree root to the
leaf λa. Such a representation of a function D[j, b] is not unique. Furthermore,
we store with each node ν a value mν which is the sum of the weights on the
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Tj−1,bTj,b−1

Tj,b

⇓
λz

λ0 λN−1 λ0

λ0

λz

λz

λN−1

λN−1

Fig. 3. The tree Tj,b is contructed from Tj,b−1 and Tj−1,b by creating new nodes along
the path from the root to the leaf λz, and adopting the subtrees to the left of the path
from Tj,b−1, and the subtrees to the right of the path from Tj−1,b

path from the left child of ν to the leaf λaν , that is: the rightmost descendant of
the left child of ν.

Lemma 5. The data structure Tj,b for the representation of function D[j, b] can
be operated on such that:

(i) The representation of a zero-function (i.e. a function that always evaluates
to zero) can be constructed in O(N) time. Also the representation of a
function that always evaluates to ∞ can be constructed in O(N) time.

(ii) Given Tj,b of D[j, b], evaluating function D[j, b](a) takes O(log N) time.
(iii) Given Tj−1,b and Tj,b−1 of the functions D[j − 1, b] and D[j, b − 1], re-

spectively, a representation Tj,b of D[j, b] can be computed in O(log N)
time.

Proof. We restrict ourselves to item (iii), the main element of the solution.
To construct Tj,b from Tj,b−1 and Tj−1,b efficiently, we take the following

approach. We find the sequences of left and right turns that lead from the root
of the trees down to the leaf λz , where z is defined as in lemma 4. Note that the
sequences of left and right turns are the same in the trees Tj,b, Tj,b−1, and Tj−1,b,
only the weights on the path differ. Though we do not compute z explicitly, we
will show below that we are able to construct the path from the root of the tree
to the leaf λz corresponding to z, by identifying, based on the stored weights, at
each node along this path whether the path continues left or right.

Lemma 4 tells us that for each leaf left of λz, the total weight on the path
to the root in Tj,b must be the same as the total weight on the corresponding
path in Tj,b−1. At λz itself and right of λz , the total weights to the root in Tj,b

must equal those in Tj−1,b, plus fj(xz). We construct the tree Tj,b with these
properties as follows. We start building Tj,b by constructing a root ρ. If the path
to λz goes into the right subtree, we adopt as left child of ρ the corresponding
left child ν of the root from Tj,b−1. There is no need to copy ν: we just add a
pointer to it. Furthermore, we set the weight of ρ equal to the weight of the root
of Tj,b−1. If the path to λz goes into the left subtree, we adopt the right child
from Tj−1,b and take the weight of ρ from there, now adding fj(xz).
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Then we make a new root for the other subtree of the root ρ, i.e. the one that
contains λz , and continue the construction process in that subtree. Every time
we go into the left branch, we adopt the right child from Tj−1,b, and every time
we go into the right branch, we adopt the left child from Tj,b−1 (see figure 3).
For every constructed node ν, we set its weight wν so that the total weight of ν
and its ancestors equals the total weight of the corresponding nodes in the tree
from which we adopt ν’s child — if the subtree adopted comes from Tj−1,b, we
increase wν by fj(xz).

By keeping track of the accumulated weights on the path down from the root
in all the trees, we can set the weight of each newly constructed node ν correctly
in constant time per node. The accumulated weights together with the stored
weights for the paths down to left childrens’ rightmost descendants, also allow us
to decide in constant time which is better: D[j, b−1](aν) or D[j−1, b](aν)+fj(xz).
This will tell us if λz is to be found in the left or in the right subtree of ν.

The complete construction process only takes O(1) time for each node on the
path from ρ to λz . Since the trees are perfectly balanced, this path has only
O(log N) nodes, so that Tj,b is constructed in time O(log N). ��

Theorem 1. The similarity d(P1, . . . , Pk; P ) between k polylines {P1, . . . , Pj}
with n vertices in total, and a polygon P with m vertices, can be computed in
O(kmn log(mn)) time using O(kmn log(mn)) storage.

Proof. We use algorithm Fastcompute d(P1, . . . , Pk; P ) with the data structure
described above. Step 1 and 2 of the algorithm can be executed in O(kmn +
mn log n) time. From lemma 5, we have that the zero-function ZERO can be
constructed in O(N) time (line 3). Similarly, the infinity-function INFINITY
can be constructed in O(N) time (line 4). Lemma 5 also insures that constructing
D[j, b] from D[j − 1, b] and D[j, b − 1] (line 12) takes O(log N) time, and that
the evaluation of D[k, b](a) (line 15) takes O(log N) time. Notice that no node
is ever edited after it has been constructed. Thus, the total running time of the
above algorithm will be dominated by O(kN) executions of line 12, taking in
total O(kN log N) = O(kmn log(mn)) time.

Apart from the function values of fj computed in step 2, we have to store
the ZERO and the INFINITY function. All these require O(kN) = O(kmn)
storage. Notice that any of the functions constructed in step 12 requires only
storing O(log(N)) = O(log(mn)) new nodes and pointers to nodes in previously
computed trees, and thus we need O(kmn log(mn)) for all the trees computed in
step 12. So the total storage required by the algorithm is O(kmn log(mn)). ��

We note that the problem resembles a general edit distance type approximate
string matching [9]. Global string matching under a general edit distance error
model can be done by dynamic programming in O(kN) time, where k and N rep-
resent the lengths of the two strings. The same time complexity can be achieved
for partial string matching through a standard “assign first line to zero” trick
[9]. This however does not apply here due to the condition xb − xa ≤ l0.
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4 Experimental Results

Our algorithm has been implemented in C++ and is evaluated in a part-based
shape retrieval application (see http://give-lab.cs.uu.nl/Matching/Mtam/)
with the Core Experiment “CE-Shape-1” part B test set devised by the MPEG-7
group to measure the performance of similarity-based retrieval for shape descrip-
tors. This test set consists of 1400 images: 70 shape classes, with 20 images per
class. The shape descriptor selected by MPEG-7 to represent a closed contour of
a 2D object or region in an image is based on the Curvature Scale Space (CSS)
representation [8]. We compared our matching to the CSS method, as well as to
matching the global contours with turning angle functions (GTA).

CSS/GTA Part-based Bull’s Eye Score

Query Image Query Parts CSS GTA MPP

10 30 65

beetle-20

15 15 70

ray-3

Fig. 4. A comparison of the Curvature Scale
Space (CSS), Global Turning Angle function
(GTA), and our Multiple Polyline to Polygon
(MPP) matching (in %)

The performance of each shape
descriptor was measured using the
“bull’s-eye” percentage: the per-
centage of retrieved images belong-
ing to the same class among the top
40 matches (twice the class size).
These experimental results indicate
that for those classes with a low
performance of the CSS matching,
our approach consistently performs
better. See figure 4 for two exam-
ples. The emphasis of this paper
lies on the algorithmic aspects, but
for a rigorous experimental evalu-
ation, see [11]. The running time
for a single query on the MPEG-7
test set of 1400 images is typically
about one second on a 2 GHz PC.
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ABSTRACT
This paper introduces a measure for computing the dissimilarity be-
tween multiple polylines and a polygon based on the turning func-
tion, and describes a part-based retrieval system using that dissim-
ilarity measure. This dissimilarity can be efficiently computed in
time O(kmn log mn), where m denotes the number of vertices in
the polygon, and n is the total number of vertices in the k polylines
that are matched against the polygon. This dissimilarity measure
identifies similarities even when a significant portion of one shape
is different from the other, for example because the shape is artic-
ulated, or because of occlusion or distortion. The effectiveness of
the dissimilarity measure in demonstrated in a part-based shape re-
trieval system. Quantitative experimental verification is performed
with a known ground-truth, the MPEG-7 Core Experiment test set,
in a comparison with the Curvature Scale Space method, and a
global turning angle function method.

Categories and Subject Descriptors: I.5 Pattern Recognition, I.3.5
Computational Geometry.
General Terms: Algorithms.
Keywords: Shape matching, retrieval.

1. INTRODUCTION
The motivation for part-based shape retrieval is twofold. Firstly,

partial matching is an important problem that has not received much
attention. The matching of shapes has been done mostly by com-
paring them as a whole [1, 9, 12]. Such a matching fails when a
significant part of one shape is occluded, for example. In this paper,
we address the partial shape matching problem, which is concerned
with matching portions of two given shapes.

Secondly, partial matching methods are effective for database
retrieval problems. Partial matching helps identifying similarities
even when a significant portion of one shape boundary is occluded,
or seriously distorted. It could also help in identifying similarities
between contours of an articulated object in different configurations
of its moving parts, like the contours of a sitting and a walking cat.
Partial matching also helps alleviating the problem of unreliable
object segmentation from images, over or undersegmentation, giv-
ing only partially correct contours.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

Contribution Firstly, we introduce a measure for computing the
dissimilarity between multiple polylines and a polygon, see figure
1. The polylines could for example be pieces of an object contour
incompletely extracted from an image, or could be boundary parts
in a decomposition of an object contour. The measure we propose
is based on the turning function representation, and can be com-
puted in O(kmn log mn) time, where m denotes the number of
vertices in the polygon, and n is the total number of vertices in the
k polylines that are matched against the polygon.

Secondly, we describe a part-based shape retrieval system. Given
a large collection of shapes, and a query consisting of a set of
polylines, we want to retrieve those shapes in the collection that
best match our query. The set of polylines forming the query are
boundary parts in a decomposition of a database shape – both this
database shape and the parts in the query are selected by the user.
The quantitative evaluation on the basis of a known ground-truth
indicate that a part-based approach to matching consistently im-
proves the global matching performance for difficult categories of
shapes.

1.1 Previous Work
Most of the approaches to partial shape matching are based on

computing local features of the contour, and then looking for cor-
respondences between the features of the two shapes, see e.g. [8],
[11]. These local solutions work well when the matched subparts
are almost equivalent up to a transformation such as translation, ro-
tation or scaling, because for such subparts the sequences of local
features are very similar. This makes them useful for applications
like detecting instances of a model shape in a cluttered scene. How-
ever, the problem of shape-based retrieval in a general database is
more involved, since it requires to report matchings between sub-
parts that we perceive as similar, but may have quite different local
features (different number of curvature extrema for example).

P

P1 P2 P3

P

P3

P2

P1

Figure 1: Matching an ordered set {P1, P2, P3} of polylines
against a polygon P .

remcov
Tekstvak
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Geometric hashing [15] is designed for partial matching, but
does not easily transform to our case of matching multiple polylines
to a polygon. Also the Hausdorff distance allows partial matching.
It is used by [4] for image matching, but only for discrete point sets.

Partial matching based on the turning function (see section 2.1)
of two polylines under scaling, translation and rotation, can be done
in time O(m2n2), see [2]. However, that works for only two single
polylines.

In this paper we address the partial shape matching problem for
the purpose of shape-based retrieval. Another approach to this
problem is that of Latecki et al. [7], which is based on establish-
ing the best correspondence of parts in a decomposition of the
matched shapes, simplified by a discrete curve evolution process.
A serious drawback of this approach is that the matching is done
between parts of simplified shapes at “the appropriate evolution
stage”, which is not further detailed, though it certainly has an ef-
fect on the quality of the matching process.

2. POLYLINES-TO-POLYGON MATCHING
In this section we concentrate on the problem of matching an

ordered set {P1, P2, . . . , Pk} of k polylines against a polygon P
(see figure 1). For this purpose, the polylines are rotated and shifted
along the polygon P , in such a way that the pieces of the bound-
ary of P “covered” by the k polylines are mutually disjoint except
possibly at their endpoints.

2.1 Turning function
The turning function ΘA of a polygon A measures the angle of

the counterclockwise tangent with respect to a reference orientation
as a function of the arc-length s, measured from some reference
point on the boundary of A. It is a piece-wise constant function,
with jumps corresponding to the vertices of A. A rotation of A by
an angle θ corresponds to a shifting of ΘA over a distance θ in the
vertical direction. Moving the location of the reference point A(0)
over a distance t ∈ [0, lA) along the boundary of A corresponds to
shifting ΘA horizontally over a distance t.

The distance between two polygons A and B is defined as the L2

norm between their two turning functions ΘA and ΘB , minimized
with respect to the vertical and horizontal shifts of these functions
(in other words, minimized with respect to rotation and choice of
reference point). More formally, suppose A and B are two poly-
gons with perimeter length lA and lB , respectively, and the polygon
B is placed over A in such a way that the reference point B(0) of B
coincides with point A(t) at distance t along A from the reference
point A(0), and B is rotated clockwise by an angle θ with respect
to the reference orientation. We define the quadratic dissimilarity
f(A, B, t, θ) between A and B for a given placement (t, θ) of B
over A, as the square of the L2 norm between their two turning
functions ΘA and ΘB , shifted relative to each other corresponding
to the values of t and θ:

f(A, B, t, θ) =

∫ lB

0

(ΘA(s + t)−ΘB(s) + θ)2ds.

The dissimilarity between two polygons A and B is then given by:

d(A,B) = min
θ∈R, t∈[0,lA)

√
f(A, B, t, θ).

To achieve invariance under scaling, Arkin et al. [1] propose to
normalize the two polygons to unit length prior to the matching.

For measuring the difference between a polygon A and a poly-
line B the same measure can be used. For the purpose of our part-
based retrieval application, we want that a polyline B included in

a polygon A to match polygon A perfectly, that is: their dissimi-
larity should be zero. For this reason we do not scale the polyline
or the polygon prior to the matching process. Thus, our dissim-
ilarity measure is not scale-invariant. In our part-based retrieval
application (see section 3) we achieve robustness to scaling by nor-
malizing all shapes in the collection to the same diameter of their
circumscribed circle.

The turning function is sensitive to unevenly spread noise, since
that distorts the parameterization of the curves. Evenly spread noise
is less a problem.

2.2 Dissimilarity measure
The new dissimilarity measure we introduce in this paper is based

on the turning function, but it is redesigned to measure the dissimi-
larity between a set of polylines and a polygon. Let Θ : [0, l]→ R

be the turning function of a polygon P with m vertices, and of
perimeter length l. Since P is a closed polygon, the domain of Θ
can be easily extended to the entire real line, by Θ(s + c l) =
Θ(s) + c 2π, for c any integer. Let {P1, P2, . . . Pk} be a set of
polylines, and let Θj : [0, lj ] → R denote the turning function of
the polyline Pj of length lj . If Pj is made of nj segments, Θj is
piecewise-constant with nj − 1 jumps (see figure 2).

For simplicity of exposition, we denote by fj(t, θ) the quadratic
dissimilarity f(P, Pj , t, θ) between the polyline Pj and the polygon
P , for a given placement (t, θ) of Pj over P . Thus,

fj(t, θ) =

∫ lj

0

(Θ(s + t)−Θj(s) + θ)2ds.

We define a measure for the dissimilarity between an ordered
set {P1, P2, . . . , Pk} of k polylines and a polygon P . We assume
the polylines satisfy the condition

∑k
j=1 lj ≤ l. The dissimilarity

measure, which we denote by d(P1, . . . , Pk; P ), is the square root
of the sum of quadratic similarities fj , minimized over all valid
placements of P1, . . . , Pk over P (or in other words, minimized
over all valid horizontal and vertical shifts of their turning func-
tions): d(P1, . . . , Pk; P ) =

min
valid placements

(t1, θ1) . . . (tk, θk)

(
k∑

j=1

fj(tj , θj)

)1/2

.

It remains to define what the valid placements are. The horizon-
tal shifts t1, . . . , tk correspond to shiftings of the starting points
of the polylines P1, . . . , Pk along P . These horizontal shifts can-
not be independent of each other, due to the required validity of
the match and the ordering condition. The validity of the match is
the condition that all k polylines should cover pieces of P that are
mutually disjoint except possibly at their endpoints. The ordering
condition implies that the starting points of P1, . . . , Pk are matched
with points on the boundary of P in counterclockwise order around
P , that is: tj−1 ≤ tj for all 1 < j ≤ k, and tk ≤ t1 + l. Fur-
thermore, the validity of the match implies a sharpening of the con-
straints to tj−1 + lj−1 ≤ tj for all 1 < j ≤ k, and tk + lk ≤ t1 + l
(see figure 2). Without loss of generality, we may restrict the possi-
ble choices for t1 to [0, l). Thus, t2, ..., tk must lie in a subinterval
of [0, 2l). The vertical shifts θ1, . . . , θk correspond to rotations of
the polylines P1, . . . , Pk with respect to the reference orientation,
and are independent of each other.
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Figure 2: In order to measure the degree of matching
d(P1, . . . , Pk; P ) between the polylines P1, P2, P3 and the poly-
gon P , we shift the turning functions Θ1, Θ2, and Θ3 horizon-
tally and vertically over the turning function Θ.

The dissimilarity measure between the polylines P1, . . . , Pk and
the polygon P is thus given by: d(P1, . . . , Pk; P ) =

min
t1∈[0,l), t2,...,tk∈[0,2l);

∀j∈{2,...,k}: tj−1+lj−1≤tj ; tk+lk≤t1+l

(
k∑

j=1

f∗
j (tj)

)1/2

,

(1)
where f∗

j (tj) = minθ∈R fj(tj , θ) is the quadratic dissimilarity be-
tween Pj and P for a given positioning tj of the starting point of
Pj over P , minimized over all rotations of Pj .

The properties of d(P1, . . . , Pk; P ) and the characterization of
the optimal solution lead to a straightforward dynamic program-
ming algorithm that runs in O(km2n2) time using O(km2n2) stor-
age. We also have developed a more efficient algorithm that runs in
O(kmn log mn) time and uses O(kmn log mn) storage [14].

3. PART-BASED SHAPE RETRIEVAL
In order to demonstrate the effectivenes of the new dissimilar-

ity measure for part-based shape retrieval, we have developed an
experimentation system that uses the dissimilarity measure intro-
duced in the previous section. The retrieval problem we are consid-
ering is the following: given a large collection of polygonal shapes,
and a query consisting of a set of polylines, we want to retrieve
those shapes in the collection that best match the query. The query
represents a set of disjoint boundary parts of a single shape, and the
matching process evaluates how closely these parts resemble pieces
of a shape in the collection. Thus, instead of querying with com-
plete shapes, we make the query process more flexible by allowing
the user to search for only certain parts. The parts in the query are
selected by the user from an automatically computed decomposi-
tion of a given contour.

The part-based retrieval works for any decomposition method,
but in our implementation of the system, we have used a decompo-
sition based on the medial axis [13].

3.1 Experimental Results
As test collection for the retrieval application we used the MPEG-

7 shape silhouette database. We have used the Core Experiment
“CE-Shape-1” part B [6], a test set devised by the MPEG-7 group to
measure the performance of dissimilarity-based retrieval for shape
descriptors. This test set consists of 1400 images: 70 shape classes
of 20 images. The outer closed contour of the object in each image
was extracted. In this contour, each pixel corresponds to a ver-
tex. In order to decrease the number of vertices, we then used the
Douglas-Peucker [3] polygon approximation algorithm. This also
alleviates the potential problem of noise.

Each simplified contour was then decomposed into parts. The
polygonal decomposition has proven to be robust against the level

Figure 3: The retrieved results interface of our part-based
shape retrieval application.

of polygon approximation. A smaller number of verties in the ap-
proximation has little effect on the simplified medial axis, and thus
on the polygon decomposition, see [13].

The matching of a query consisting of k polylines to an arbitrary
database contour is based on the dissimilarity measure described
in section 2. This dissimilarity measure is not scale invariant, as
we noticed in section 2.1. The MPEG-7 shape collection, however,
contains shapes at different scales. In order to achieve robustness to
scaling, we scaled all shapes in the collection to the same diameter
of the circumscribed disk. The reason we opted for a normalization
based on the circumscribed disk, instead of the bounding box, for
example, is that a class in the collection may contain images of an
object at different rotational angles.

In order to formulate a query, the user selects an arbitrary shape
in the collection, and then a set of parts from its decomposition.
The selected parts can be treated either as separate chains of the
query, or as adjacent concatenated parts. Figure 3 depicts the results
interface of our experimentation platform. The best 40 matches are
shown to the user, who is allowed to select any retrieved shape in
order to find out detail information about the matching process. The
query parts are depicted in the upper left side of the screen, in red.
The selected retrieved shape appears in the upper right side, and its
pieces matched by the query appear to its left. Through the dialog
box “Part Selector”, the user can select a query part. For any re-
trieved shape, and any query part the system visualizes the turning
functions of the query part and the piece of the retrieved shaped that
is matched to. The quadratic dissimilarity between these polylines
appears in the dialog box “Part Distance”, while the overall dissim-
ilarity between the query and the selected retrieved shape appears
in the dialog box “Total Distance”.

The selection of parts comprising the query has a big influence
on the results of part-based retrieval. The MPEG-7 collection in-
cludes classes “horse”, “dog”, “deer”, “cattle”, whose shapes have
similar parts, such as limbs. Querying with such parts retrieves
shapes from all these classes, see for example figure 3. Though
only a few shapes from the same class are ranked in the first 20 re-
trieved images, the part-based matching results cannot be regarded
as poor. If we want to retrieve as many shapes from the same class,
the selection of parts should capture more relevant and specific
characteristics of the shape.



Bull’s Eye True Positives
image Performance (%) in class size (%)

CSS GTA PBR CSS GTA PBR

beetle-10 10 35 60 5 20 55
beetle-20 10 30 65 10 10 55
butterfly-4 15 25 55 10 20 55
butterfly-11 20 45 65 20 35 50

bird-9 20 25 50 15 25 40
bird-11 5 20 45 5 15 35
bird-17 20 15 60 20 15 40

carriage-18 70 80 95 45 80 90
crown-13 30 30 50 25 25 40
deer-13 20 40 45 15 40 40
deer-15 15 40 50 5 30 35
dog-11 10 15 50 10 15 45
horse-3 15 25 65 10 25 40
horse-4 25 30 50 20 20 45
horse-17 10 10 70 10 5 60

ray-3 15 15 70 15 5 60
ray-17 15 25 50 15 20 40

Figure 4: Experiment results. A comparison of the Curvature
Scale Space (CSS), the global matching based on the turning
function (GTA), and our Part-based Retrieval (PBR).

The MPEG-7 Visual Standard is initiated in order to specify stan-
dard content-based descriptors that allow to measure dissimilarity
in images or video based on visual criteria. Each visual descrip-
tor incorporated in the MPEG-7 Standard was selected from a few
competing proposals, based on an evaluation of their performance
in a series of tests called Core Experiments. The Core Experi-
ment “CE-Shape-1” was devised to measure the performance of
2D shape descriptors. The performance of several shape descrip-
tors, proposed for standardization within MPEG-7, is reported in
[10]. The performance of each shape descriptor was measured us-
ing the so-called “bull’s-eye performance”: each image is used as
a query, and the number of retrieved images belonging to the same
class was counted in the top 40 (twice the class size) matches.

The shape descriptor selected by MPEG-7 to represent a closed
contour of a 2D object in an image is based on the Curvature Scale
Space (CSS) representation. The reported dissimilarity-based re-
trieval performance of the CSS described in [9] is 75.44%.

The dissimilarity used by our retrieval application is based on a
turning function representation. A whole contour turning function-
based shape descriptor is reported to have a dissimilarity-based re-
trieval performance of 54.14% [5].

For easy classes in “CE-Shape-1”, with a low variance among
their shapes, the CSS matching [9] gives good results, with a re-
trieval rate over 90%, as measured by the “bull’s-eye performance”.
For the class labeled “beetle”, however, the different relative lengths
of the antennas/legs, and the different shapes of the body pose prob-
lems for global retrieval. The average performance rate of CSS
matching for this class is only 36%. For the “ray” and “deer”
classes, the bad results (an average performance rate of the CSS
matching of 26% and 33%, respectively) are caused by the different
shape and size of the tails and antlers, respectively, of the contours
in these classes. A part-based matching with a proper selection of
parts, is significantly more effective in such cases.

We tested the performance of our part-based shape matching. An
overall performance percentage for the matching process, like in
[10], however, is untractable, since that would require 1400 interac-

tive queries. We therefore present comparison results on a number
of individual queries. We compared our approach with the global
CSS matching and with a global matching based on the turning
function. Figure 4 presents a set of instances when a part-based
approach outperforms these global matching methods.

4. CONCLUDING REMARKS
We introduced a new measure for computing the dissimilarity

between a set of parts of one shape and another shape. Its effective-
ness was demonstrated in a part-based retrieval system. A prereq-
uisite of effectiveness of the part-based matching is the selection of
query parts that capture relevant and specific characteristics of the
shape. This has to be done interactively by the user. Note that with
only slight adaptations we can also solve the problem of matching
an ordered set of polylines against an open polyline.

This paper focusses on the dissimilarity measure itself, not on a
fully-fledged retrieval system. We have shown, however, that the
use of a robust boundary decomposition method allows effective
application of our new dissimilarity measure. Experimental results
indicate that for those classes with a low average performance of
the CSS matching, our approach consistently performs better.

It is difficult to compare our multiple polyline to polygon match-
ing with other part-based matching methods, because they either
work on feature vectors, on points, or on a single polyline, and each
method requires its own very specific interactive part selection.

The algorithm to compute the dissimilarity measure was imple-
mented in C++, the part-based retrieval interface was written in
Java. The running time for a single query on the MPEG-7 test set
of 1400 images is typically about one second on a 2 GHz PC.
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