
PROFI

Project number: FP6-511572
Project acronym: PROFI
Title: Perceptually-relevant Retrieval Of Figurative Images

Deliverable No: D5.4: Implementation of partial curve matching

Short description:
We implemented the probabilistic algorithm described in deliverable 5.3 for finding partial
similarity between two shapes that represent figurative images. Shapes are modeled by sets
of polygonal curves. Two variants of partial matching were implemented: partial-partial
matching, that is parts of one shape are matched to parts of the other shape, and complete-
partial matching, that is the complete first shape is matched against parts of the other
shape. In both cases, first some candidate transformations of one shape are found that map
the largest possible parts of one shape in the proximity of parts of the other shape. The
allowed transformations are translations, rigid motions, homotheties and similarity maps.
For each candidate transformation we compute the distance between the one transformed
shape and the other shape, and return the transformation yielding the smallest distance
together with the distance value. In case of partial-partial matching we also report the
relative size of the matched parts and the quality of the match.

Due month: M18
Delivery month: M18
Lead partner: Freie Universität Berlin
Partners contributed: Freie Universität Berlin
Classification: RE

Project funded by the European Community under the
“Information Society Technologies” Programme

1 Results 2

1 Results

1.1 Introduction

In this workpackage we develop and implement algorithms for matching parts of two planar
shapes that represent figurative images. we assume that shapes are modeled by sets of polyg-
onal curves. As possible class of transformations we consider translations, rigid motions (i.e.,
translations and rotations), homotheties (i.e., translations and scalings) and similarity maps
(i.e., translations, rotations and scalings).

In general, we are given two shapes A and B and a class of allowable transformations and we
want to find a transformation, such that the transformed shape B or some parts of it are as
close to the shape A as possible. Usually, the quality of match is measured by some distance
function, which assigns a number indicating the quality of match to any pair of shapes. In
this workpackage we address the problem of complete-partial matching (CPM), i.e., matching
shape B completely as good as possible to some part of shape A, and the problem of partial-
partial matching (PPM), i.e., matching some part of B as good as possible to some part
of A. Clearly, both partial matching problems CPM and PPM are not uniquely specified
since there is a tradeoff between the quality of the match and the size of the matched parts.
Which of two criteria is more important, depends on the application. We address this problem
by introducing a parameter k which regulates the influence of the quality of match and the
matched size on the final distance value. The matched parts, the quality of the match for
these parts as well as their relative size with respect to the total size of the shapes are also
returned as part of the matching result.

The appendix A describes the programming interface of the partial matching classes, for the
complete documentation of the software library please refer to the deliverable report D4.4.

1.2 Matching

For two given shapes we first find some candidate transformations, these transformations are
then evaluated according to the appropriate distance function as described in section 1.3.
The matching process is implemented according to the description in deliverable report D5.3,
section 2.2. We briefly sketch the idea of the matching algorithm:

The transformations are computed based on (local) subsets of vertices. If there exist one or
more parts that have a similar counterpart, the transformations computed for these parts will
form clusters that yield candidate transformations.

Let S1 and S2 be sets of polylines, a vertex p1,0 of a polyline P1 ∈ S1 and a vertex p2,0 of a
polyline P2 ∈ S2 are randomly chosen in every step. Beginning with these seed vertices an
ordered set P̃1 ⊆ P1 and an ordered set P̃2 ⊆ P2 of vertices or vertex surrogates are generated.

For both polylines starting from the last vertex added to P̃ the distance to the next vertex is
computed. If the difference of the distances lies below a certain threshold, both vertices are
added, otherwise for the vertex with smaller distance a corresponding vertex surrogate with the
same distance is created on the other polyline and this pair is added. For every cardinality
m̃ of P̃1 and P̃2 the transformation t is computed, such that ε =

∑m̃
i=1 ‖t(p1,i)− p2,i‖2 is

minimized. The transformation’s weight is composed of the length of the covered part of the

1.3 The Distance Function 3

polyline and the error ε. For every step the transformation t with the highest weight is handed
over to the clustering algorithm.

The largest clusters represent transformations that let the largest parts of the shapes match.
In every cluster we keep track of the parts of the shapes contributing to this cluster.

1.3 The Distance Function

We define a resemblance function for two polyline sets S1, S2 as follows: The resemblance
function φs for a line segment s ∈ S1 is defined as

φs(λ) = maxg∈S2 (αs,g(λ) · βs,g)

with α being the distance factor and β being the slope factor as defined for the complete-
complete matching case in deliverable report D4.3, section 2.3.
The weighting function ω (to prevent parts with many parallel lines from dominating over
parts with solitary lines) is defined analogously to the resemblance function:

ωs(λ) =
1∑

g∈S1
(αs,g(λ) · βs,g)

The directed resemblance measure Φ→(S1, S2) is defined by

Φ→(S1, S2) =

∑
s∈S1

(∫ 1
λ=0 φs(λ) · ωs(λ) dλ · ls

)
Ω(S1)

with ls being the length of s and Ω(S1) being the total weight of S1:
Ω(S1) =

∑
s∈S1

(∫ 1
λ=0 ωs(λ) dλ · ls

)
.

For the complete-complete matching we took a weighted combination of two one-sided resem-
blance values. Note, that the above definition of the directed resemblance function applied
to the complete shapes S1 and S2 gives us a matching score of how good the complete shape
S1 is matched to shape S2 and, therefore, a matching score for the complete-partial matching.
Since the resemblance function takes values between zero and one, with value of one meaning
a perfect resemblance and zero – no resemblance, we have to convert it to a distance function,
which would take small values for similar and large value for dissimilar shapes. In the current
implementation we define distance as 1− Φ→(S1, S2).

For partial-partial matching, as mentioned above, for each cluster we keep a record of which
parts of the shapes contribute to the transformation defined by this cluster. Let t be a
transformation corresponding to a cluster and St

1 ⊂ S1 and St
2 ⊂ S2 are the parts of the shapes

matched by t. Then, we compute the resemblances for the matched parts: s1 = Φ→(St
1, S

t
2)

and s2 = Φ→(St
2, S

t
1). However, if we just take the resemblances of parts as the quality of

match and compute them for all clusters we would in general get those matching perfectly
very small parts of the shapes as the best ones. The first step to avoid this problem and to
reduce the number of distance computations, is to consider only the largest clusters.

Among the largest clusters we still want the size of matched parts to affect the matching

score. Therefore, we compute a ratio of the matched parts as ri = |St
i |

|Si| for i = 1, 2, where
|Si| denotes the total length of the polylines of the shape Si and

∣∣St
i

∣∣ denotes the length of

2 Deviations from Plan 4

the parts matched by the transformation t, and define a weight factor as fi = 1 − (1 − ri)k

(see Figure 1), where k is a (user-defined) parameter; the default value of k is 3 in the current
implementation. The maximum of two weight factors f∗ = max(f1, f2) is then used to adjust
the resemblance value: s∗ = f∗ s1+s2

2 . Again, the resemblance value needs to be converted to a
distance value. The choice of the factor function was motivated by the following consideration:
if large parts of at least one shape are matched, we want to leave the resemblance value almost
unchanged, and give larger penalties the smaller the matched parts get. With the parameter k
the user can control these penalties, if k is large, the resemblance value stays almost unchanged
even for small parts, whereas for small values of k the quality of match decreases with the size
of matched parts.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

k = 1
k = 2
k = 3
k = 5

k = 80

Figure 1: Weight factor parameterized by k.

A more subtle task is to decide whether these parts form an expressive subshape that has
been recognized – a match in the PPM / CPM sense – or if they are just independent and do
not induce a perceptually relevant resemblance.

2 Deviations from Plan

There have been no deviations from plan.

A Partial matching API 5

A Partial matching API

A.1 EuProfi::ProbabilisticMatcherPP Class Reference

#include <probabilisticMatcher.h>

A.1.1 Detailed Description

This class implements the probabilistic algorithm for partial matching as described in deliv-
erable D5.3 section 2.2.

The distance function used to evaluate the quality of match is described in deliverable D5.3
section 2.3. The current implementation of the distance function follows the approach of
considering only the parts of the shapes that have a correspondence in the other shape for
valuating the quality of match and then weighting the result with the relative size of the
matched parts.

The full matching result contains the transformation which yields the best match, the distance
value corresponding to that transformation, the one-sided resemblances of the matched parts
of the two shapes, the relative size of the matched parts and the matched parts of the shapes.

Public Types

• typedef SimilarityInfoP full_result_type
• typedef std::vector< full_result_type > results_type
• typedef PolylineSet argument_type
• typedef PolylineSet2 argument_type_2
• typedef char ∗ argument_type_s

Public Member Functions

• full_result_type match (argument_type_s shape2, argument_type_s shape1)
• full_result_type match (argument_type shape2, argument_type shape1)
• full_result_type match (argument_type_2 shape2, argument_type_2 shape1)
• full_result_type matchToFixedFirst (argument_type_s shape2)
• full_result_type matchToFixedFirst (argument_type shape2)
• full_result_type matchToFixedFirst (argument_type_2 shape2)
• results_type getResults ()
• double distance (argument_type_s shape2, argument_type_s shape1)
• double distance (argument_type shape2, argument_type shape1)
• double distance (argument_type_2 shape2, argument_type_2 shape1)
• void setFirst (argument_type_s shape1)
• void setFirst (argument_type shape1)
• void setFirst (argument_type_2 shape1)
• double distanceToFixedFirst (argument_type_s shape2)

A.1 EuProfi::ProbabilisticMatcherPP Class Reference 6

• double distanceToFixedFirst (argument_type shape2)
• double distanceToFixedFirst (argument_type_2 shape2)
• void clearFirst ()

A.1.2 Member Function Documentation

A.1.2.1 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type_s shape2, argument_type_s shape1)

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shape data are read from files with names given by shape1 and shape2.

A.1.2.2 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type shape2, argument_type shape1)

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shapes are given as PolylineSet.

A.1.2.3 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type_2 shape2, argument_type_2 shape1)

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shapes are given as PolylineSet2.

A.1.2.4 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type_s shape2)

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is read from a file with name given by shape2. The first shape should be set previously
via call setFirst(shape1).

A.1.2.5 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type shape2)

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is given as PolylineSet. The first shape should be set previously via call setFirst(shape1).

A.1 EuProfi::ProbabilisticMatcherPP Class Reference 7

A.1.2.6 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type_2 shape2)

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is given as PolylineSet2. The first shape should be set previously via call set-
First(shape1).

A.1.2.7 PartialMatchingResults EuProfi::ProbabilisticMatcherPP::getResults ()

Returns all candidate matches found by the last algorithm run, that is, one of the following
should be called first: match(), distance(), matchToFixedFirst(), or distanceToFixedFirst().

A.1.2.8 double EuProfi::AbstractMatcher::distance (argument_type_s shape2,
argument_type_s shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, and computes and returns the
distance value corresponding to that transformation.

Shape data are read from files with names given by shape1 and shape2.

A.1.2.9 double EuProfi::AbstractMatcher::distance (argument_type shape2,
argument_type shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, computes and returns the distance
value corresponding to that transformation.

Shapes are given as PolylineSet.

A.1.2.10 double EuProfi::AbstractMatcher::distance (argument_type_2 shape2,
argument_type_2 shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, computes and returns the distance
value corresponding to that transformation.

Shapes are given as PolylineSet2.

A.1.2.11 void EuProfi::AbstractMatcher::setFirst (argument_type_s shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

Shape is read from a file with name given by shape1.

A.1.2.12 void EuProfi::AbstractMatcher::setFirst (argument_type shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

A.2 EuProfi::ProbabilisticMatcherCP Class Reference 8

Shape is given as PolylineSet.

A.1.2.13 void EuProfi::AbstractMatcher::setFirst (argument_type_2 shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

Shape is given as PolylineSet2.

A.1.2.14 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type_s shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

The shape is read from a file with name given by shape2. The first shape should be set
previously via call setFirst(shape1).

A.1.2.15 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

The shape is given as PolylineSet. The first shape should be set previously via call set-
First(shape1).

A.1.2.16 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type_2 shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

The shape is given as PolylineSet2. The first shape should be set previously via call set-
First(shape1).

A.1.2.17 void EuProfi::AbstractMatcher::clearFirst () [inherited]

Resets the predefined shape.

A.2 EuProfi::ProbabilisticMatcherCP Class Reference

#include <probabilisticMatcher.h>

A.2.1 Detailed Description

This class implements the probabilistic algorithm for complete-partial probabilistic matching
as described in deliverable D5.3 section 2.2.

A.2 EuProfi::ProbabilisticMatcherCP Class Reference 9

The distance function indicates how good the complete first shape is matched to some parts
of the second shape.

The full matching result contains the transformation yielding the best complete-partial match,
the distance value corresponding to that transformation and the one-sided resemblance values
for both shapes.

Public Types

• typedef SimilarityInfoP full_result_type
• typedef std::vector< full_result_type > results_type
• typedef PolylineSet argument_type
• typedef PolylineSet2 argument_type_2
• typedef char ∗ argument_type_s

Public Member Functions

• full_result_type match (argument_type_s shape2, argument_type_s shape1)
• full_result_type match (argument_type shape2, argument_type shape1)
• full_result_type match (argument_type_2 shape2, argument_type_2 shape1)
• full_result_type matchToFixedFirst (argument_type_s shape2)
• full_result_type matchToFixedFirst (argument_type shape2)
• full_result_type matchToFixedFirst (argument_type_2 shape2)
• results_type getResults ()
• double distance (argument_type_s shape2, argument_type_s shape1)
• double distance (argument_type shape2, argument_type shape1)
• double distance (argument_type_2 shape2, argument_type_2 shape1)
• void setFirst (argument_type_s shape1)
• void setFirst (argument_type shape1)
• void setFirst (argument_type_2 shape1)
• double distanceToFixedFirst (argument_type_s shape2)
• double distanceToFixedFirst (argument_type shape2)
• double distanceToFixedFirst (argument_type_2 shape2)
• void clearFirst ()

A.2.2 Member Function Documentation

A.2.2.1 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type_s shape2, argument_type_s shape1) [inherited]

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shape data are read from files with names given by shape1 and shape2.

A.2 EuProfi::ProbabilisticMatcherCP Class Reference 10

A.2.2.2 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type shape2, argument_type shape1) [inherited]

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shapes are given as PolylineSet.

A.2.2.3 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::match
(argument_type_2 shape2, argument_type_2 shape1) [inherited]

Finds and returns the best transformation mapping shape2 to shape1, along with the distance
value corresponding to that transformation.

Shapes are given as PolylineSet2.

A.2.2.4 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type_s shape2) [inherited]

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is read from a file with name given by shape2. The first shape should be set previously
via call setFirst(shape1).

A.2.2.5 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type shape2) [inherited]

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is given as PolylineSet. The first shape should be set previously via call set-
First(shape1).

A.2.2.6 PartialMatchingResult EuProfi::ProbabilisticMatcherPP::matchTo-
FixedFirst (argument_type_2 shape2) [inherited]

Finds and returns the best transformation mapping shape2 to predefined shape, along with
the distance value corresponding to the transformation.

Shape is given as PolylineSet2. The first shape should be set previously via call set-
First(shape1).

A.2.2.7 PartialMatchingResults EuProfi::ProbabilisticMatcherPP::getResults ()
[inherited]

Returns all candidate matches found by the last algorithm run, that is, one of the following
should be called first: match(), distance(), matchToFixedFirst(), or distanceToFixedFirst().

A.2 EuProfi::ProbabilisticMatcherCP Class Reference 11

A.2.2.8 double EuProfi::AbstractMatcher::distance (argument_type_s shape2,
argument_type_s shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, and computes and returns the
distance value corresponding to that transformation.

Shape data are read from files with names given by shape1 and shape2.

A.2.2.9 double EuProfi::AbstractMatcher::distance (argument_type shape2,
argument_type shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, computes and returns the distance
value corresponding to that transformation.

Shapes are given as PolylineSet.

A.2.2.10 double EuProfi::AbstractMatcher::distance (argument_type_2 shape2,
argument_type_2 shape1) [inherited]

Finds the best transformation mapping shape2 to shape1, computes and returns the distance
value corresponding to that transformation.

Shapes are given as PolylineSet2.

A.2.2.11 void EuProfi::AbstractMatcher::setFirst (argument_type_s shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

Shape is read from a file with name given by shape1.

A.2.2.12 void EuProfi::AbstractMatcher::setFirst (argument_type shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

Shape is given as PolylineSet.

A.2.2.13 void EuProfi::AbstractMatcher::setFirst (argument_type_2 shape1)
[inherited]

Presets a shape to be compared by consecutive calls of matchToFixedFirst(shape2).

Shape is given as PolylineSet2.

A.2.2.14 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type_s shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

A.3 EuProfi::SimilarityInfoP Struct Reference 12

The shape is read from a file with name given by shape2. The first shape should be set
previously via call setFirst(shape1).

A.2.2.15 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

The shape is given as PolylineSet. The first shape should be set previously via call set-
First(shape1).

A.2.2.16 double EuProfi::AbstractMatcher::distanceToFixedFirst (argument_-
type_2 shape2) [inherited]

Finds the best transformation mapping shape2 to the predefined shape, computes and returns
the distance value corresponding to the transformation.

The shape is given as PolylineSet2. The first shape should be set previously via call set-
First(shape1).

A.2.2.17 void EuProfi::AbstractMatcher::clearFirst () [inherited]

Resets the predefined shape.

A.3 EuProfi::SimilarityInfoP Struct Reference

#include <probabilisticMatcher.h>

Inherits EuProfi::SimilarityInfo.

A.3.1 Detailed Description

Structure SimilarityInfoP contains the result of the partial matching.

It contains the best found transformation and the distance corresponding to that transforma-
tion.

In case of partial-partial matching it also contains the information about the relative size of
the matched parts of each shape and the one-sided similarity values of the matched parts cor-
responding to the transformation. Additionally the matched parts of the shapes are returned
as sets of polygonal curves. The distance value of the match depends on the distances between
the matched parts and on the relative size of the matched parts.

In case of complete-partial matching the ratio-values and the matched parts are unset. The
one-sided similarity values are computed for both shapes. The distance value indicates how
good the complete first shape is matched to some parts of the second shape.

The transformation can in general be an affine transformation, though typically a similarity
transformation is used.

A.3 EuProfi::SimilarityInfoP Struct Reference 13

Public Member Functions

• double dist () const

Public Attributes

• double ratioFirst
• double ratioSecond
• double simFirst
• double simSecond
• PolylineSet partsFirst
• PolylineSet partsSecond
• double distance
• AffineTfm atm

A.3.2 Member Function Documentation

A.3.2.1 double EuProfi::SimilarityInfo::dist () const [inline, inherited]

Returns the distance between the matched shapes.

A.3.3 Member Data Documentation

A.3.3.1 double EuProfi::SimilarityInfoP::ratioFirst

Relative size of the matched parts of the first shape.

This value is not set in the result of complete-partial matching.

A.3.3.2 double EuProfi::SimilarityInfoP::ratioSecond

Relative size of the matched parts of the second shape.

This value is not set in the result of complete-partial matching.

A.3.3.3 double EuProfi::SimilarityInfoP::simFirst

One-sided similarity value between the matched parts of the first shape and the matched parts
of the second shape.

A.3.3.4 double EuProfi::SimilarityInfoP::simSecond

One-sided similarity value between the matched parts of the second shape and the matched
parts of the first shape.

A.3 EuProfi::SimilarityInfoP Struct Reference 14

A.3.3.5 PolylineSet EuProfi::SimilarityInfoP::partsFirst

Matched parts of the first shape.

This value is not set in the result of complete-partial matching.

A.3.3.6 PolylineSet EuProfi::SimilarityInfoP::partsSecond

Matched parts of the second shape.

This value is not set in the result of complete-partial matching.

A.3.3.7 double EuProfi::SimilarityInfo::distance [inherited]

Distance between the matched shapes.

A.3.3.8 AffineTfm EuProfi::SimilarityInfo::atm [inherited]

Transformation yielding the best match.

	Results
	Introduction
	Matching
	The Distance Function

	Deviations from Plan
	Partial matching API
	EuProfi::ProbabilisticMatcherPP Class Reference
	Detailed Description
	Member Function Documentation

	EuProfi::ProbabilisticMatcherCP Class Reference
	Detailed Description
	Member Function Documentation

	EuProfi::SimilarityInfoP Struct Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

