
PROFI

Project number: FP6-511572
Project acronym: PROFI
Title: Perceptually-relevant Retrieval Of Figurative Images

Deliverable No: D7.1: Indexing scheme for retrieval by lay-out

Short description:
Given a query and a large database, the problem of layout indexing can be formulated as
efficiently selecting candidate models, which have similar layouts as the query. The layout
of an image with multiple shapes can be represented as a graph whose nodes correspond
to shapes and whose edges show relations between the shapes. When graphs are used to
represent images, the problem of layout indexing can thus be transformed into that of graph-
based indexing.
In this report, we present an overall framework as well as a new graph-based indexing tech-
nique for large datasets. The algorithm is based on a powerful characterization of graphs
through their laplacian matrices. We draw on an important theorem from graph theory to
show that our graph characterization can be used to retrieve similar graphs or subgraphs from
the database. Experiments performed in the context of a recognition task demonstrate both
robustness and efficacy of the overall approach.

Due month: M21
Delivery month: M21
Lead partner: Utrecht University
Partners contributed: Utrecht University
Classification: PU

Project funded by the European Community under the
“Information Society Technologies” Programme

1

1 Results obtained

1.1 Objectives

PROFI work package (WP) 7 is layout indexing. The objective of layout indexing problem
is to efficiently select candidate elements, which have similar layouts as the query. During
the development of WP 7, we represent images as graphs, where the vertices correspond to
shapes and the edges show the relations between the shapes. This representation allows us
to formulate the problem of layout indexing as that of indexing based on graph structures.
When working with graphs, indexing is defined as the problem of efficiently selecting a small
set of database graphs, which share a subgraph with the query. In the context of graphs,
while considerable research has been devoted to the problem of graph matching, rather less
attention has been paid to graph-based indexing.

Towards this objective, we have designed an overall framework. Section 1.2 presents a new
indexing framework for retrieving images by both shape and layout similarities in a large image
database systems. The novelty of our approach lies in the combination of several competing
approaches into a unified scheme. This, in turn, allows us to overcome the drawbacks of one
approach by taking advantage of another. Our framework addresses layout and shape (both
global and partial) indexing problems altogether. The system organizes database images in a
multi-level structure, in which the relations between two consecutive-level entities are formed
by parent/child edges with certain properties. Levels are designed to answer the specific query
types for each case.

Within this framework, the technical aspect of the indexing is performed by a novel tech-
nique for indexing graph structures, given in the Appendix, which has been submitted as a
scientific paper. In our method, the topological structure of a graph as well as that of its
subgraphs are represented as vectors in which the components correspond to the sorted lapla-
cian eigenvalues of the graph or subgraphs. By using the laplacian spectrum as a signature,
we capture the graph topology to a large extent. The signature of a graph is invariant under
the reorderings of its vertices. This, in turn, allows us to compare the signatures of a large
number of graphs without solving the computationally expensive correspondence problem
between their vertices. Given the laplacian spectrum of a principal submatrix of a matrix,
we draw on an important theorem from spectral graph theory to show that our graph char-
acterization can be used to retrieve similar graphs or subgraphs from large database systems.
More specifically, by performing a nearest neighbor search around the query spectra, similar
but not necessarily isomorphic graphs are retrieved. In addition, for a query graph, a voting
schema ranks database graphs into an indexing hypothesis to which a final matching process
can be applied. We give the details of our indexing algorithm in the first appendix.

1.2 Extendable Multi-level Layout and Shape Indexing

1.2.1 Introduction

Shape matching is one of the fundamental problems in computer vision. In a typical matching
problem the objective is to compute an overall measure of similarity between an unknown
shape (query) and a model, and to find the correspondences between their feature sets. The
similarity value between two shapes can be used for shape recognition by using stored exem-
plars for different shape classes as models. For one query, finding its best matches from a
large database requires an effective and efficient indexing, in which the objective is to return

2

Figure 1: An example for one type of image retrieval problem where the overall layout simi-
larity between two images is more significant than the individual shape similarities.

a small collection of candidate models to which the actual matching process is applied.
Given a query image and a large image database, each with multiple shapes, a good

indexing algorithm filters out database images based on individual shape similarities as well
as the spatial relations (or layout) that exist between the shapes. The overall similarity
between two images is usually computed as the total similarity of their individual shapes and
the closeness of their spatial relations. Thus, the best match for a particular query is the one
that resembles both shape and layout similarities. In this scenario the indexing algorithm
should perform the filtering process such that while the images, which have sufficiently similar
shapes as the query, are kept, the others are eliminated. Computing the similarity between
two shapes often requires the global shape characteristics to be similar. On the other hand,
finding partial similarity involves the process of extracting parts and computing the similarity
between them using local information. After retrieving the database images, which have
sufficiently similar shapes as the query, they should be sorted based on the closeness of their
layouts to the query.

Although this seems a quite common feature that any indexing approach should have,
in some applications (one type of trademark registration, especially) the overall layout simi-
larity is more important than the individual shape similarities (see Figure 1). The indexing
algorithm, therefore, should return the images containing similar layouts regardless of the
closeness their shapes. Clearly, the objectives of an indexing algorithm in these cases men-
tioned above are different, i.e., one image considered as false negative in one case may be
false positive in the other. Specifically, given a query and a large database, the objective of
an indexing algorithm for each case can be summarized as follows:

Case 1: Retrieve images that have overall layout similarity as the query. The shape
similarities are not taken into consideration in this case.

Case 2: Retrieve images that have individual shape similarities as the query. Then sort
them based on layout similarity.

Case 3: Retrieve images that have partial shape similarities as the query. Then sort them
based on layout similarity.

Although case 2 and case 3 might seem closely related, in case 1, global information
(center of mass, area, perimeter, elongation, etc.) is used to determine how similar two
shapes are, while in case 2 only local information is considered. Many indexing approaches
have been proposed for each of these cases separately. However, in some applications such as
trademark registration, users are often interested in all three cases to determine if a newly
designed trademark image is close to any of the registered, existing trademarks. A more
comprehensive indexing approach should, therefore, address all of these problems in the same

3

framework.
This paper presents a new indexing framework for retrieving images by both shape and

layout similarities in a large image database systems. The novelty of our approach lies in the
combination of several competing approaches into a unified scheme. This, in turn, allows us
to overcome the drawbacks of one approach by taking advantage of another. Our framework
contains three sub-parts, one for each case listed above. The system organizes database images
and their shapes in a multi-level structure, in which the relations between two consecutive-
level entities are formed by parent/child edges with certain properties. Levels are designed
to answer the specific query types for each case. A variety of techniques have been proposed
in the literature for shape representation [27]. These techniques are often divided into two
classes: region-based and boundary-based. While the contour of shapes are used in boundary-
based representation methods, the internal details along with the boundary details are taken
into account in region-based algorithms.

1.2.2 Related Work

We distinguish between physical or raw images at pixel level (residing in the image database),
and logical representations of these images (residing in the logical database). Computational
performance cannot be ignored for large image sets: a linear scan through all image represen-
tations while querying makes interactive searching practically impossible for large databases.
Therefore, indexing of the database has to be incorporated in the retrieval system to speed
up the search. The actual indexing of the images takes place in the logical database. First
we will consider some general indexing strategies.

In the early years of content based image retrieval, indexing was mostly done by space
partitioning methods such as the kd-tree [2], R-tree [19] or variants such as the R+-tree [35]
or R∗-tree [1]. For a complete overview of these multidimensional access methods see the
survey by Gaede and Günther [17]. In general, these methods either partition the data space
into disjoint cells of possibly varying size (kd-tree and related work), or associate a region
with each object in the data space (R-tree family).

When the feature or object space is metric, example-based space-partitioning techniques
are well suited for indexing purposes. One of the first works in this field was by Yianilos [40].
All database objects are divided into concentric rings around one or multiple example objects
and then stored in a tree. These example objects are often called vantage objects or vantage
points. Other examples based on this strategy are the VP-tree [4], the M-Tree [8] and the
MVP-Tree [5]. These and other techniques for searching in metric spaces are surveyed by
Chaves et al. [13].

Instead of dividing the database objects in concentric rings around vantage objects and
storing them in a tree, database objects can be embedded in a feature space. The dimension-
ality of this feature space is related to the number of vantage objects and where the features
are based on the distances the database objects have to the vantage objects. Examples of
these embedding techniques are Vantage Indexing [38], Fastmap [16], SparseMap [22] and
MetricMap [39]. These methods are surveyed by Hjaltason and Samet [20]. A big advantage
of these methods over tree-based indexing methods is that the required number of online
distance calculations is reduced to the dimensionality of the embedding. Once the query has
been positioned in the embedding space, all that is needed is a geometric range query or a
nearest neighbour query where no more distance calculations are involved.

The methods mentioned above are all general shape indexing methods, i.e. they can be

4

used in combination with any kind of distance measure. Some indexing strategies specifically
facilitate queries by spatial similarity, i.e. queries containing layout information. We will
now consider some of these spatial indexing techniques and highlight their main features in
Table 1.

The spatial relations between two objects in an image can be divided into topological
relations and directional relations. Egenhofer [14] describes 8 basic topological relations
(disjoint, contains, inside, meet, equal, covers, covered-by and overlap). Directional relations
are usually represented by the four primary directions (North, South, East and West) and
the four secondary directions (NW, SE, SW and SE). An alternative for this representation
is the angle between the line connecting the two centers of mass and the horizontal line. For
instance, the latter method was used by El-Kwae et al. [15] and Gudivada et al. [18].

A method taking into account only directional information was proposed by Chang et al.
[6], and is called 2D-Strings. To produce a 2D-string representation, the center of mass of
each object in the image is projected on the x and y axes. By taking the objects from left
to right and from below to above, two one-dimensional strings are obtained, in which the
objects are represented by a class identifier. The shape matching problem is now transformed
into string matching. Various extensions have been proposed such as the 2D G-String [7], 2D
C-String [24]. These extensions deal mainly with overlapping objects with complex shapes.

Petrakis and Orphanoudakis [31] propose an indexing scheme based on 2D-Strings. For
each image, all possible subsets of size 2 up to a predefined number Kmax are created. These
subsets are represented by a string taking into account both layout information and object
specific information: the order (as in a 2D-String), inclusion properties, object size, roundness
and orientation.

A major drawback of these symbolic projection methods is that in general they are not
rotation invariant. El-Kwae et al. [15] propose a robust Framework for Retrieving Images
by Spatial Similarity (FRISS). It can handle translation, scaling, perfect rotation (all objects
in the image are rotated around a reference point with the same angle), multiple rotation
(objects are rotated around a reference point with different angles). Furthermore, it takes
into account topological relations between the objects and shape-based similarities.

A popular alternative to symbolic projection methods is the graph representation. Gu-
divada and Raghavan [18] propose spatial orientation graphs (SOG), in which each vertex
represents an object and the edges between them are weighted with the slope of the line
connecting the two centers of mass. The distance between two graphs is calculated by finding
the angle between each pair of corresponding edges. ImageMap [30], proposed by Petrakis
and Faloutsos, extends this idea. The images are represented as attributed relational graphs
(ARG), storing object size, orientation, and roundness in the nodes and distance, angle,
and contains-relationships in the edges. This approach first computes an n × n distance
matrix, where each entry corresponds to the graph-edit distance between its corresponding
graph pairs. The graphs are then embedded into an f -dimensional space (target space) using
Fastmap [16] such that the distances in the target space are approximately equal to those in
the original graph space. The method formulates the image retrieval problem as that of range
search in the target space. Note however that the embedding process does not preserve the
distances exactly, but the distances are distorted up to a certain degree. Although powerful,
the method suffers from the limitations of the graph-edit distance approach. For instance,
if the graphs are not trees, i.e, the images can not be represented as trees, then the graph
distances can not be computed in polynomial-time using this approach. In addition, due to
the fact that the graph-edit distance does not deal well with the occlusion, it is not clear how

5

Figure 2: Layout indexing on an image consisting of iconic building blocks, example similar
to the experiments conducted by El Kwae and Kabuka [15]. On the left the original image,
on the right it’s logical representation.

this indexing schema performs against noise and occlusions.
Yet another graph representation is proposed by Nabil et al. [28]. In the 2D-Projection

Interval Representation, each object in the image is projected onto the x and y-axes. The
intervallic relations between these projections are computed, and stored in the graph’s edges.
The topological relations that Egenhofer [14] pointed out are stored in these edges as well.
Graph matching is based on two distance matrices, describing the distance between the dif-
ferent topological relations and the different intervallic relations.

The layout indexing techniques mentioned above along with our proposed framework
(Emulsion) are summarized in Table 1. The columns, respectively, refer to the representation
type, the type of information that is encoded (directional relations, topological relations, shape
similarity), the type of transformations that can be handled (translation, scaling, rotation)
and the cases as defined in Section 1.2.1 that are handled by the method.

One of our main contributions is the combination of both layout and shape based indexing.
Most previous works handle only the layout indexing of iconic images, where the total image
consists of a combination of iconic building blocks chosen from a predetermined set. There is
no need then for finding shape-based correspondences between image components in the query
and database objects, since the building blocks are simply labeled with their appropriate class
labels. However, it also means a strong restriction on the types of images such methods can
handle. See Figure 2 for an example. The only method in our table that incorporates both
layout and shape indexing besides the proposed method is ImageMap, but it’s disadvantages
have been discussed already. Moreover, since it is possible to specify a query at each level of
the hierarchy, our framework handles all three cases as described in Section 1.2.1, as opposed
to all the other methods in the table.

The proposed method exploits a flexible yet powerful shape indexing method to reduce the
set of candidate matches, and while doing so finds correspondences between image components
in the query and the database objects that can be used to evaluate layout similarity efficiently.

1.2.3 Multi-Level Indexing Framework

The overview of our multi-level indexing framework is presented in Figure 3. Each database
image in the system is first represented as a collection of polygonal curves, shown in Part (a).
The type of a polygonal curve can be either closed (polygon) or open (polyline). The details
of the polygonal approximation method are outside the scope of this paper. As mentioned
in Section 1.2.1, we address three types of indexing problems, one in each level of our frame-

6

Table 1: Comparing 8 layout indexing schemas by various features.

Method Layout Dir. Top. Shape Trans. Scal. Rot. Cases
repr. handled

SOG [18] graph Y N iconic Y Y Y 2,3
2D-strings [6] string Y N iconic Y Y N 2,3
2D-G-String [7] string Y N iconic Y Y N 2,3
2D-C-String [24] string Y N iconic Y Y N 2,3
FRISS [15] graph Y Y iconic Y Y Y 2,3
2D-PIR [28] graph Y Y iconic Y Y N 2,3
ImageMap [30] graph Y Y Y Y Y Y 2,3
Emulsion graph Y Y Y Y Y ? 1,2,3

work. Before defining our indexing algorithms, we present a method to select the canonical
(or representative) elements for datasets at group and component levels. By showing only
such elements at these levels, our goal is to achieve the speedup for building the indexing
methods. Here, the speedup one actually achieves depends on the structural homogenity of
the databases. Note that the representative elements shown in group and component levels
form the input datasets for component and shape-primitive levels, respectively. Therefore,
the overal fitness of the framework depends on how good these levels are constructed. The
arrows between the levels carry important information, which will be used during the recog-
nition stage. The details of the framework are given below.

The group level (Part b of Figure 3) is designed for the first type of an indexing problem,
in which an overall layout similarity between image pairs is given a higher significance than
the individual shape similarities. For images represented as polygonal curves, this part creates
graphs whose vertices represent polygonal curves and whose edges represent spatial relations
between the vertices. Two vertices are connected by an edge if the normalized geometric dis-
tance between them is less than a predetermined threshold. Alternatively, one may construct
the graphs such that each vertex is connected to its k−nearest neighbors. Part (a) of Figure 4
shows two images with several polygonal curves. The graphs corresponding to these images
are shown in Part (b). Once the graphs are constructed, the problem of finding similarity
between two images becomes that of graph matching, as depicted in part c of the figure. Our
first objective in this level is to select canonical graphs and then build the indexing approach
on such graphs. Thus, we first need to match two graphs and compute a similarity score
between them.

Matching two graphs means to establish their vertex correspondences. In particular, we
are interested in graph matching algorithms, which computes the similarity between graphs
using both vertex and edge attributes. In addition, the graph matching algorithm should
handle possible segmentation and articulation errors, yielding many-to-many matchings be-
tween vertex sets. Although the first indexing problem does not take into account vertex
attributes and only considers overal layout to find the similarity between two images, using
both vertex and edge attributes is essential for selecting canonical elements. These elements
will represent graphs that are close in terms of their both vertex and edge properties.

Let G = (V,E) be a graph constructed for one image. For vertex v ∈ V , we let Av denote
the attribute vector associated with vertex v. The entries of each such vector represent the
set of features Av = {scale, location, significance, orientation}, where

7

Figure 3: Overview of the shape indexing framework. Sample polygonal approximations for
some database images are shown in part a. Part b shows the canonical groups computed
by representing the groups as attributed graphs, using a graph matching algorithm to com-
pute pairwise similarities, and applying a clustering algorithm to perform the final selection.
Three types of indexing problems are addressed in parts b, c, and d. Relations between two
consecutive-level entities are formed by parent/child edges with certain properties.

• scale: total length of the corresponding polygon’s/polyline’s line segments.

• location: location of the center of mass.

• significance: predetermined significance value for the polyline/polygone in the trade-
mark image.

• orientation: the angle between the major axis and the horizantal line. Recall that
the major axis of a polygon/polyline is the line joining two boundary points that are
farthest away from each other.

Similarly, for every pair of vertices u, v ∈ V , if there is an edge e = (u, v) between them,
we let Re denote the relation vector associated with edge e. The entries of this vector show
the set of both geometrical and topological relations Re = {relative scale, geometric distance,
relative orientation, edge strength}. Here, the edge strength is defined for polygons only, and
computed as the amount of overlapping area between them. Depending on the application
domain, we can add more vertex and edge attributes. In any case, our proposed method can
handle any set of attributes.

Armed with robust graph representations of each image, the problem of finding similari-
ties between image pairs can now be transformed to that of many-to-many graph matching.
We will use one such graph matching algorithm presented in [10]. The algorithm starts by
representing the graphs as tree metrics and embedding tree metrics into a high-dimensional
vector space with small distortion. Each vertex in the tree is represented as a point in the

8

Figure 4: Formulating the problem of image matching as that of graph matching. Images
with several polygonal curves shown in Part (a) are represented by attributed graphs whose
vertices represent polygonal curves and whose edges represent spatial relations between the
vertices (Part (b)). A graph matching algorithm is then used to perform the matching in
Part (c).

high-dimensional space. Associated with each point is a set of histograms that encode the
node’s attributes as well as it’s adjacent edges. Matching point distributions via the Earth
Mover’s Distance under transformation [33, 9] yields desired many-to-many matchings. The
overal framework also returns a distance measure between the original graph pairs. Matching
two graphs many-to-many might seem like a bad idea for the layout indexing problem since
the overal layout of a graph may seem to be different from that of its representative. However,
only graphs that are close to each other in the form of both their low level node features and
their abstractions will share a representative. One important advantage for choosing such a
graph matching algorithm is also to handle possible segmentation and articulation errors.

Now that a suitable graph matching algorithm has been selected, we can proceed with
the selection of the canonical graphs to appear at the first level of our structure. Given a
set of graphs G = {g1, . . . , gn} and a distance function dg : G × G → R ≥ 0, our goal is
to select a subset of graphs G′ ⊂ G that best describes the elements of G with respect to
the distance function dg. While we want to increase the total similarity score between the
elements of G′ and G −G′, we also want elements of G′ to be as dissimilar to each other as
possible. We use one such selection algorithm presented in [12, 11]. The algorithm expresses
the problem as that of quadratic optimization integer programming and presents its relazation
through semidefinite programming. Once the solution for the semidefinite program is found,
the algorithm uses a rounding scheme to perform the selection. The reader is encouranged
to look at the references for details. Since the pairwise graph distances are computed under
similarity transformations, we store both the distance and transformation parameters in the
edges between the database graphs and their representative sets, i.e., the edges between Part
(b) and Part (c) of Figure 3.

After showing the canonical elements at the group level of our framework, we proceed with
describing our indexing algorithms. Recall that we address three different indexing algorithms,
one for each problem defined in Section 1: layout, shape and partial-shape indexing problems.
Our layout indexing technique is presented in the first appendix. The second type of the
indexing problem (shape indexing) is addressed in the component level. This indexing problem

9

concerned with efficiently retrieving images that are globally similar to the query. Since we
use polygonal representations of images, we capture general features of polygonal curves for
shape description. Then we match two polygonal curves using their descriptions. Here, we
are interested in a matching algorithm that optimally matches two complete components
under similarity transformation, i.e., translation, rotation, and scaling. The similarity scores
between component pairs are used to identify the subset of components that closely resembles
the original set. As we did in the group level, we build our second indexing approach on this
representative subset. Finally, in the last class of indexing problem we address in this paper
(partial indexing), a partial similarity algorithm is used to filter out database images, which
do not contain a similar part with the query. The shape-primitive level of the framework is
designed to handle this type of indexing problem. In order to determine such similarity, we
first need to decompose each polygonal curve shown in the second level of the framework into
its shape-primitives. Obtaining such a decomposition in the literature is often referred to as
2D shape decomposition or shape-partition [29, 26]. Decomposition criteria can be defined in
a number of ways. Medial-axis transform [25], boundary point clustering [36], collinearity [23],
fuzzy subset theory [41], graph theoretic clustering [37], morphological method [32, 34], just
to name a few. In our framework we require that the polygonal curves are decomposed
into natural parts, corresponding to the human intuition. It has been shown that such a
decomposition can be gained at the negative minima of curvature [21, 3]. A set of shape-
primitives P = {p1, . . . , pt} is a decomposition of component C, if their union is C and all Pi

are disjoint. More formally, P must satisfy:
C = {P | ∪t

i=1 pi = C and ∀i6=jpi ∩ pj = ∅}.
Although by decomposing polygonal curves into their shape-primitives, the partial image

matching problem is transformed into that of shape-primitive matching, performing the actual
matching procedure between each shape-primitive appearing at shape-primitive level and
each of the query shape-primitives is inefficient. We overcome this problem by employing the
vantage indexing approach [38]. The first step in the vantage indexing is to compute distances
between the database and m predetermined vantage objects. This step represents the database
objects as a set of points in the m−dimensional vantage space, one point for each database
entry. If the distance function obeys identity, positiveness, and triangle inequality then it is
guaranteed that there will be no false negatives, i.e. recall is always 100%. Turning back to our
multi-level structure, we must first select m vantage objects A∗ = {A∗

1, . . . , A
∗
m} among the

shape primitives. Next, we need to compute the distance between each vantage object and the
query shape-primitive under some distance measure that satisfies the properties mentioned
above. This process creates a point for each query shape-primitive pi = (x1, . . . , xm), such that
xj = δ(pi, A

∗
j), where δ is the distance measure defined on shape-primitives After computing

the distances between query shape-primitives and the vantage objects, we perform a range
search in the m−dimensional space or retrieve the k−nearest neighbors for nearest neighbor
query. This algorithm returns a set of neighbors for each shape-primitive of the query. As
we did in the previous level of our framework, we sort the database objects by the number
of times they appear in these sets, which allows us to drop ambiguous database objects from
further consideration.

Although this algorithm results in no false negatives, there are still false positives possible
so precision is not necessarily high. The retrieval performance is influenced by the choice of
vantage objects; with a good set of vantage objects precision values increase significantly. We
use our method called Spacing-Based selection to find good vantage objects. This method
avoids the selection of strongly correlated vantage objects and guarantees a dispersal (up to a

10

Table 2: Layout features

Relation Representation
direction scalar: angle between connecting line and horizontal line
distance scalar: distance between c.o.m.
disjoint boolean
touch scalar: total length of touching edges
overlap scalar: area of overlap(-1 for polylines)
covers boolean
covered by boolean
contains boolean
inside boolean
equal boolean

certain predefined threshold) of the database objects in vantage space. This method was also
under development while this report was written. We will finish developing the Spacing-Based
selection method and use it in this structure.

1.2.4 Layout Similarity

Suppose the user specifies a query at either level 2 (component level) or level 3 (shape primitive
level) of the Multi-Level Shape Indexing structure. The hierarchy is then used to find a
reduced set of candidate database objects for the query based on shape similarity, by following
the parent-child edges that connect the different layers of the hierarchy. However, no layout
information is taken into account while producing this hypothesis. Therefore, we propose an
additional step to rank or reduce this hypothesis, based on the layout information. Since the
Multi-Level Shape Indexing structure hands us all correspondences between query components
and candidate match components, we can evaluate layout similarity between the query and
the candidate match efficiently. The same holds at the shape primitive level; we know the
correspondences between query shape primitives and component shape primitives as well. In
this section we describe in detail how the layout similarity between a query and a candidate
image is evaluated.

In an offline preprocessing step, the complete layout information for each database image
is computed. This results in a completely connected directed graph for each image, with n
vertices and n2 edges, where n is the number of components in the image. A vector with
multiple features is associated with each edge (i, j), describing the layout relation between
vertices i and j. The layout features are both topological and directional, see Table 2. The
directional relation between two components is encoded as the angle between the line connect-
ing the two centers of mass and the horizontal line. For the topological information however,
we distinguish between eight different relations (see Figure 5): disjoint, touch, overlap, cov-
ered by/covers, contains/inside and equal. Note that overlap is undefined for polygons. Some
topological relations are represented by a binary attribute, others are represented by a quan-
tifier.

Note that these feature vectors can easily be extended to account for even more types of
layout information, or be reduced to speed-up the search process. This is all dependent on
the application.

11

(a) (b) (c) (d) (e) (f)

Figure 5: Different topological relations. (a) disjoint, (b) touch, (c), overlap, (d) covers/covers
by, (e) contains/inside, (f) equal.

(a)

(b)

(c)

(d)

(e)
(a’)

(c’)

(b’)

(a)

(c)
(b)

(d)

(a’)

(c’)

(e)

(b’)

Query Candidate match

Query: graph representation Candidate match: graph representation

Figure 6: Evaluating layout similarity: layout information (topological and directional) is
stored in the edges of the graph representation. Correspondences between components in
query and candidate match are given by the Shape Indexing Framework. Only compare
corresponding edges, i.e. (a, b) with (a′, b′), (b, c) with (b′, c′) and (a, c) with (a′, c′)

1.2.5 Evaluating layout similarity

Given a query q, the Multi-Level Shape Indexing structure returns a set K containing all the
candidate matches, which are sufficiently similar to the query in terms of shape similarity of
the components. For each candidate match k ε K, the Shape Indexing structure hands us all
the correspondences between the query components and the components in k. We use these
correspondences to evaluate layout similarity efficiently: we only evaluate layout similarity
between corresponding edges. See Figure 6 for an example. Note however that the actual
layout information is already present in the database, only the entries in the layout matrices
are compared.

Based on the comparison of corresponding edges the candidate matches are ranked to
produce the final hypothesis. The layout similarity between a query q and a candidate match
k is based on the layout similarities between their corresponding edges. The total layout
similarity between q and k is defined as

SIMlayout(q, k) = 1− (1/c

c∑
i=1

dlayout(ei, e
′
i))

where c is the number of corresponding edge pairs, ei is an edge in q and e′
i is its corresponding

12

eεq e′εk

d

α
α′

d′

Figure 7: Illustrating the difference in directional relation between two corresponding edges.
On the left, query edge e and on the right edge e′ from a candidate match. The angles α and
α′ are found by rotating counter clockwise from the horizontal line to the lines connecting
the centers of mass.

edge in k. The layout similarity between two corresponding edges eεq and e′εk is

dlayout(e, e′) = w(ddir(e, e′) + (1− w)dtop(e, e′))

where ddir(e, e′) denotes the difference in directional relation between e and e′, dtop(e, e′)
denotes the difference in topological relation between e and e′ and w denotes a weighting
factor (0 ≤ w ≤ 1) to be specified by the user.

The directional difference, ddir(e, e′), is defined as

ddir(e, e′) = |cos α d− cos α′ d′|

where α is the angle associated with e, α′ is the angle associated with e′, d is the distance
associated with e, and d′ the distance associated with e′. The angles α and α′ are found by
rotating counter clockwise from the horizontal line to the lines connecting the centers of mass.
For example, see Figure 7

The topological difference, dtop(e, e′), is based on the other eight features in the feature
vector: the topological features. It is defined as

dtop(e, e′) = 1/8
8∑

i=1

d(fi, f
′
i)

where f is the subvector containing the eight topological features associated with e and f ′

is this 8-dimensional subvector associated with e′. For topological relations represented by a
boolean, d(fi, f

′
i) is defined as follows

d(fi, f
′
i) =

{
1 if fi = f ′

i ,
0 otherwise

For topological relations represented by a scalar, d(fi, f
′
i) is defined as the extent to which

the relation is preserved, i.e.

d(fi, f
′
i) =

{
fi/f ′

i if fi ≤ f ′
i

f ′
i/fi otherwise

13

1.2.6 Query Handling Procedure

The structure of our framework allows users to start their query in any level. The selection of
the level, in which, the query takes place is application-dependent. If, for instance, the user
is interested in the images, which have the same layout as the query, as well as those, which
have partial similarity to the query, then applying level 1 and level 3 indexing algorithms
generates two hypothesis, one for the layout and one for the partial shape indexing. The
intersection of these two hypothesis consists of images that contain partially similar query
shapes, whose overall layouts are close to that of query. Note that for level 2 and level 3
shape indexing approaches, the framework allows the user to specify additional constrains
besides the individual shape similarities. For example, the user may restrict the rotation
angle computed for one particular shape to be at most α degree different from the other
shapes of the query. Or, the scale factors of query shapes may be restricted to be the same
as each other etc.

As noted before, the objective of this paper is to give the readers an overal idea on our
multi-level shape and layout indexing framework. We are in the process of developing and
evaluating this framework for trademark retrieval. We will add the algorithms proposed
within the different work packages of Profi project such as shape matching and perceptual
grouping to our framework.

1.3 Results

Although our technique is designed especially for layout indexing, the first experimental evalu-
ation of the framework was performed using MPEG-7 dataset where each shape is represented
as a shock graph. The results show that for a given query, the database can be pruned over 90
for detecting the right class and 99 to find all images belonging to the query class. Our future
work for WP 7 include further exploration of our graph-based indexing method, creating a
ground-truth for layout indexing, and performing experiments on this set. For more detailed
presentation of results, see the accompanying paper in the appendix.

The paper in the Appendix is under review for CVIU Special Issue on “Similarity Matching
in Computer Vision and Multimedia”. We are also in the process of prepearing one other
layout indexing paper to be submitted to ACM International Conference on Image and Video
Retrieval (CIVR 2007).

References

[1] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and
robust acces method for points and rectangles. In Proceedings of ACM-SIGMOD, pages
322–331, 1990.

[2] J.L. Bentley. Binary search trees used for associative searching. Communications of the
ACM, 18(9):507–519, 1975.

[3] I. Biederman. Recognition–by–components: A theory of human image understanding.
Psychological Review, 94:115–147, 1987.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric
spaces. In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international confer-
ence on Management of data, 1997.

14

[5] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search queries.
ACM Trans. Database Syst., 24(3), 1999.

[6] S. K. Chang, Q. Y. Shi, and C. W. Yan. Iconic indexing by 2-d strings. IEEE Transan-
sctions on Pattern Analysis and Machiche Intelligence, 9(3):413–428, 1987.

[7] S.K. Chang, E. Jungert, and Y. Li. Representation and retrieval of symbolic pictures
using generalized 2D strings. In SPIE Conference on Visual Communications and Image
Processing, volume 3, pages 1360–1372, November 1989.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity
search in metric spaces. In Proceedings of Very Large Data Bases conference, 1997.

[9] S. D. Cohen and L. J. Guibas. The earth mover’s distance under transformation sets.
In Proceedings, 7th International Conference on Computer Vision, pages 1076–1083,
Kerkyra, Greece, 1999.

[10] M. Fatih Demirci, Ali Shokoufandeh, Yakov Keselman, Lars Bretzner, and Sven Dick-
inson. Object recognition as many-to-many feature matching. International Journal of
Comput. Vision, 69(2):203–222, 2006.

[11] T. Denton, J. Abrahamson, and A. Shokoufandeh. Approximation of canonical sets and
their applications to 2d view simplification. In CVPR (2), pages 550–557, 2004.

[12] T. Denton, M. F. Demirci, J. Abrahamson, A. Shokoufandeh, and S. J. Dickinson. Select-
ing canonical views for view-based 3-d object recognition. In ICPR (2), pages 273–276,
2004.

[13] E.Chavez and G. Navarro. Searching in metric spaces. ACM Computer Surveys,
33(3):273–321, September 2001.

[14] M.J. Egenhofer and R.D. Franzosa. Point Set Topological Relations. International
Journal of Geographical Information Systems, 5(2):161–174, 1991.

[15] E.A. El-Kwae and M.R. Kabuka. A Robust Framework for Content-Based Retrieval
by Spatial Similarity in Image Databases. ACM Transactions on Information Systems,
17(2):174–198, April 1999.

[16] C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Michael J. Carey and Dono-
van A. Schneider, editors, Prooceedings of ACM SIGMOD ’95, pages 163–174, San Jose,
California, 22–25 1995.

[17] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput.
Surv., 30(2):170–231, 1998.

[18] V. N. Gudivada and V. V. Raghavan. Design and Evaluation of Algorithms for Image
Retrieval by Spatial Similarity. ACM Transactions on Information Systems, 13(2):115–
144, April 1995.

[19] A. Gutman. R-trees: A dynamic index structure for spatial searching. In Proceedings of
ACM-SIGMOD, pages 47–54, June 1984.

15

[20] G.R. Hjaltason and H. Samet. Properties of embedding methods for similarity searching
in metric spaces. In IEEE Transactions on pattern analysis and machine intelligence,
volume 25, may 2003.

[21] D. D. Hoffman and W. Richards. Parts of recognition. Technical Report AIM-732, 1983.

[22] G. Hristescu and M. Farach-Colton. Cluster-preserving embedding of proteins. Technical
Report 99-50, 8, 1999.

[23] H.S. Kim, K.H. Park, and M. Kim. Shape decomposition by collinearity. Pattern Recog-
nition Letters, 6:335–340, 1987.

[24] S.Y. Lee and F.J. Hsu. 2d c-string: a new spatial knowledge representation for image
database systems. Pattern Recognition, 23(10):1077–1087, 1990.

[25] J. Lien and N. Amato. Simultaneous shape decomposition and skeletonization. Technical
Report TR-05-015, Parasol Laboratory, Department of Computer Science, Texas A&M
University, December 2005.

[26] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, 31(8):983–1001,
1998.

[27] B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee. Shape measures for content based
image retrieval: a comparison. Inf. Process. Manage., 33(3):319–337, 1997.

[28] M. Nabil, A.H.H. Ngu, and J. Shepherd. Picture Similarity Retrieval Using the 2D Pro-
jection Interval Representation. IEEE Transactions on Knowledge and Data Engineering,
8(4):533 – 539, 1996.

[29] T. Pavlidis. Algorithms for shape analysis of contours and waveforms. In IEEE Trans-
actions on pattern analysis and machine intelligence, volume 2, pages 301–312, 1980.

[30] E.G.M. Petrakis, C. Faloutsos, and K.-I Lin. Imagemap: an image indexing method
based on spatial similarity. In IEEE Transactions on Knowledge and Data Engineering,
volume 14, pages 979– 987, 2002.

[31] E.G.M. Petrakis and S.C. Orphanoudakis. A Methology for the Representation, Index-
ing, and Retrieval of Images by Content. Image and Vision Computing, 8(11):504–512,
October 1993.

[32] I. Pitas and A.N. Venetsanopoulos. Morphological shape decomposition. IEEE Trans-
actions on pattern analysis and machine intelligence, 12(1):38–45, January 1990.

[33] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[34] D. Schonfeld and J. Goutsias. Optimal morphological filters for pattern restoration. In
SPIE, volume 1199, pages 158–169, 1989.

[35] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r -tree: A dynamic index for
multi-dimensional objects. In The VLDB Journal, pages 507–518, 1987.

16

[36] L. G. Shapiro. A structural model of shape. In IEEE Transactions on pattern analysis
and machine intelligence, volume 2, pages 111–126, 1980.

[37] L.G. Shapiro and R.M. Haralick. Decomposition of two-dimensional shapes by graph-
theoretic clustering. IEEE Transactions on pattern analysis and machine intelligence,
1(1):10–20, January 1979.

[38] J. Vleugels and R. C. Veltkamp. Efficient image retrieval through vantage objects. Pat-
tern Recognition, 35(1):69–80, 2002.

[39] X. Wang, J. Wang, K. Lin, D. Shasha, B. A. Shapiro, and K. Zhang. An index structure
for data mining and clustering. Knowledge and Information Systems, 2(2):161–184, 2000.

[40] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general
metric spaces. In SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium
on Discrete algorithms, pages 311–321, 1993.

[41] L.A. Zadeh. Fuzzy sets. Journal of Information and Control, 8:338–353, 1965.

2 Deviations from plan

In the original plan, the due date for this Deliverable 7.1 was M12. This however was swapped
with Deliberable 6.1, and the new due date for D7.1 is M21. This has been approved by the
project officer.

3 Appendix

This appendix describes our indexing method for graph structures. This paper is under review
for CVIU Special Issue on “Similarity Matching in Computer Vision and Multimedia”.

17

Indexing through Laplacian Spectra

M. Fatih Demirci, Reinier H. van Leuken, Remco C. Veltkamp

{mdemirci, renier, remco.veltkamp} @ cs.uu.nl

Institute for Information and Computing Sciences,

Utrecht University, The Netherlands

Preprint submitted to Elsevier Science 31 October 2006

Abstract

With ever growing databases containing multimedia data, indexing has become a necessity

to avoid a linear search. We propose a novel technique for indexing multimedia databases,

where database entries can be represented as graph structures. In our method, the topo-

logical structure of a graph as well as that of its subgraphs are represented as vectors in

which the components correspond to the sorted laplacian eigenvalues of the graph or sub-

graphs. We draw from recently-developed techniques in the field of spectral integral vari-

ation to overcome the problem of computing the laplacian spectrum for every subgraph

individually. By doing a nearest neighbor search around the query spectra, similar but not

necessarily isomorphic graphs are retrieved. Given a query graph, a voting schema ranks

database graphs into an indexing hypothesis to which a final matching process can be ap-

plied. The novelties of the proposed method come from the powerful representation of the

graph topology and successfully adopting the concept of spectral integral variation in an

indexing algorithm. To examine the fitness of the new indexing framework, we have per-

formed a number of experiments using an extensive set of recognition trials in the domain of

2-D and 3-D object recognition. The experiments, including a comparison with a compet-

ing indexing method using two different graph-based object representations, demonstrate

both the robustness and efficacy of the overall approach.

Key words: Spectral graph theory; Indexing; Laplacian spectrum; Spectral integral

variation; Information retrieval

2

1 Introduction

Shape matching is one of the fundamental problems in computer vision. In a typical

matching problem the objective is to compute an overall similarity value between

an unknown shape (query) and a model, and to find the correspondences between

their feature sets. The similarity value between two shapes can be used for shape

recognition by using stored exemplars for different shape classes as models. A lin-

ear search of a database, i.e., computing the similarity between the query and each

database entry and selecting the closest one, is inefficient for large database sys-

tems. Therefore, an effective and efficient indexing mechanism is essential to se-

lect a small collection of candidates to which the actual matching process is applied.

Criminology, medicine, trademark retrieval, and content-based image retrieval on

the web are only a few examples which are likely to contain large collections.

For recognition purposes, it is very common to represent object views by graphs

whose nodes correspond to image features and whose edges indicate relations be-

tween these features. Both nodes and edges may be labeled by attributes. These

graph representations express many significant object properties such as geometric

or hierarchical structures. Such representations, however, have drawbacks: match-

ing two graphs is a difficult problem.

Graph matching problems are often formulated as largest isomorphic subgraph

problems, for which a rich body of research exists in the literature, such as pat-

tern recognition [26,25], chemical structures [33], or computer vision [45,23]. This

problem has been studied for both theoretical and practical interests. While it is an

open question whether the detection of graph isomorphism can be solved in polyno-

mial time, the problem of subgraph isomorphism is known to be NP-complete [15].

3

Although the (sub)graph isomorphism detection is computationally expensive, some

graph isomorphism detection algorithms with only polynomial-time complexity

have been developed for specific graph classes, e.g., planar graphs [22]. It is also

possible to derive such polynomial-time complexity algorithms for graphs with cer-

tain restrictions [21].

When working with graph structures, indexing is formulated as the problem of ef-

ficiently selecting a small set of database graphs, which share a subgraph with the

query. Several frameworks have been proposed to use (sub)graph isomorphism al-

gorithms with indexing methods. Shapiro and Haralick [36] proposed a method to

organize similar graphs in clusters where each cluster is indexed by a representa-

tive graph. Sossa and Horaud [42] used the coefficients of the d2-polynomial of

the laplacian matrix of a graph to index into graph datasets. These coefficients,

however, are only unique for small graphs with less than 12 vertices.

One important indexing method is a decision tree approach. Here, the goal is to

hierarchically partition the database so that the query is first matched to the root.

Depending on the result of this match, the query is then matched to either the right

or the left child of the root. This process is repeated recursively until a match is

found at an internal node (or leaf), or it exits with a failure indicating no database

graphs are isomorphic to the query. Messmer and Bunke [28] use this approach to

organize the set of all permutations of the adjacency matrix of database graphs in

a decision tree. At run time, the (sub)graph isomorphisms from the query to the

database graphs are found by a decision tree traversal. A significant drawback of

this method is its space requirement. All permutations of the adjacency matrix have

to be encoded in decision trees, whose sizes grow exponentially with the size of the

database graph. A set of pruning techniques is discussed to cut down the space

complexity.

4

So far, we have only considered the problem of (sub)graph isomorphism. However,

due to noise, occlusion, or segmentation errors, (sub)graph isomorphism may not

exist between the query and the database. Furthermore, only a certain degree of

similarity between two graphs may be present. The indexing problem, therefore, is

reformulated as efficiently retrieving database graphs whose (sub)structure is sim-

ilar to the query. Although considerable research has been devoted to the problem

of inexact (or error-tolerant) graph matching, rather less attention has been paid to

this type of indexing based on graph structures.

Costa and Shapiro [10] present a graph-based indexing method, where small rela-

tional subgraphs are used to efficiently retrieve similar graphs from a large database.

An integrated framework related to the approach reported in this paper is that of

Shokoufandeh et al. [38]. This framework is designed especially for tree structures

in which the sum of the largest eigenvalues of the adjacency matrix for each sub-

tree of the root form the component of its δ−dimensional vector, where δ is the

root degree. To account for occlusion and local deformation, these vectors are also

computed for the root of each subtree. At indexing time, each non-leaf node of the

query is represented as such a vector, and a nearest neigbor search is performed for

each vector. Although effective, by summing up the largest eigenvalues one loses

uniqueness, resulting in less representative graphs in the vector space. In addition,

it is not clear how this approach can be extended to general graph structures.

One of the primary aspects of graph theory is to derive the principal properties and

structure of graphs from their graph spectra. It is well known that eigenvalues are

closely related to main invariants of a graph. In the computer vision and pattern

recognition communities, eigenvalue-based frameworks have been applied to vari-

ous problems including shape description and indexing. Sengupta and Boyer [35]

used eigenvalue-based feature representation of CAD models to capture their gross

5

characteristics. This representation is used to partition the database into structurally

homogeneous groups. Shapiro and Brady [37] used eigenvectors of proximity graphs

to compute the feature correspondences. Turk and Pentland [44] proposed an eigen-

face approach in which images were represented as linear combinations of a small

set of images computed from a large database. The algorithm was applied to face

recognition. Sclaroff and Pentland [34] computed the eigenmodels of 2D regions

and used the model coefficients in a linear search of 2D shapes. However, since the

characterizations in this approach are global, it is not clear how this method per-

forms for retrieving models with local similarities. Some other eigenvalue-based

methods consist of applications such as edge detection [43], motion estimation [17],

and 3D object representation as 2D images [8].

1.1 Our Contributions

In this paper, we propose a novel approach to the graph-based indexing problem.

Instead of using the adjacency matrix for graph characterization as done some ear-

lier work, we characterize our graphs based on the laplacian spectrum, which is

more natural, more important, and more informative about the input graphs [29].

The definition of a laplacian matrix along with other graph-theoretical concepts

used in this paper are given in the next section. Given a graph G = (V, E), the

sorted eigenvalues of its laplacian matrix become the components of its signature,

an O(|V |)-dimensional vector. Since the laplacian spectrum is used as a graph sig-

nature without an approximation such as considering only largest eigenvalues, a

high level of uniqueness is maintained. We will discuss techniques to reduce the

cost we pay for computing such a signature in the framework.

Having established the signatures, the indexing now amounts to a nearest neighbor

6

search in a model database. For a query graph and a large graph dataset, we can,

therefore, formulate the indexing problem as that of fast selection of candidate

graphs whose signatures are close to the query signature. This formulation alone

cannot support occlusion or segmentation errors as two graphs may share similar

structures up to only some level. To perform indexing locally and thus to encode

the topology of subgraphs in the framework, we adopt a technique analogous to that

used in the decision tree approach [28]. Given the laplacian spectrum of a principal

submatrix B of matrix A, we draw on an important theorem from spectral graph

theory to show that our graph characterization can be used to retrieve similar graphs

or subgraphs from large database systems through a nearest neighbor search.

The local indexing method used in the framework is effective, but the signature

of each subgraph of a graph is computed individually. To overcome this, we use

recently-developed techniques in the domain of spectral integral variation. Specifi-

cally, given the laplacian spectrum of graph G, we will explore an efficient method

to generate the laplacian spectrum of graph G + e, where G + e is a graph obtained

by adding edge e to graph G. To our knowledge, the proposed framework is the

first framework that uses spectral integral variation in an indexing algorithm.

This approach is of particular interest to applications where the size of the database

is large, but the size of each graph is relatively small (less than around 24 ver-

tices). Although our method has a similar start-up to [28], it differs by a number of

important factors. First, we use the laplacian rather than the adjacency matrix for

graph characterization. Second, since the permutation-similar matrices result in the

same set of sorted eigenvalues, we consider such laplacian matrices once, avoiding

the need for a high-load compilation process described for this type of adjacency

matrices in [28]. Third, probably the most important difference is that our method

is intended for retrieving similar database graphs, requiring no significant graph

7

isomorphism, although the framework can easily be modified to isomorphism de-

tection.

The rest of the paper is organized as follows. Following a review of graph-theoretical

concepts in Section 2, we describe our indexing mechanism and its complexity in

Section 3. To avoid computing the signature of each subgraph individually, we

adopt the concept of spectral integral variation in Section 4. After evaluating the

framework on two different recognition domains and performing a comparison of

our approach with a competing indexing algorithm in Section 5, we end the paper

with conclusions and our future work in Section 6.

2 Notation and Definitions

Before describing our framework, some definitions are in order. A graph G is a

pair (V, E), where V is a finite set of vertices and E is a set of connections (edges)

between the vertices. The size of a graph is defined as the number of vertices. An

edge e = (u, v) connects two vertices such that u, v ∈ V . A graph G = (V, E)

is called edge-weighted if each edge e ∈ E has a weight w(e) ∈ R. Unweighted

graphs are a special case of weighted graphs, where each of the edges has weight 1.

A graph is simple if it does not contain loops or multiple edges and thus its edge set

consists of distinct pairs. All graphs considered in this paper are simple. Two graphs

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there is a bijection f : V1 →

V2 such that for any vertex pair u and v ∈ V1, (u, v) ∈ E1 iff (f(u), f(v)) ∈ E2.

The adjacency matrix A of a graph G = (V, E) is a |V | × |V | matrix whose

element with row index u and column index v is

8

A(u, v) =































1 if (u, v) ∈ E

0 Otherwise.

Let D(G) be the diagonal matrix of vertex degrees with elements of D(u, u) =

∑

v∈V A(u, v). The matrix L(G) = D(G) − A(G) is called the laplacian matrix

of G. 1 The laplacian matrix is a positive semidefinite and symmetric matrix with

at least one zero eigenvalue. The multiplicity of zero as an eigenvalue of L(G) is

equal to the number of connected components in the graph. This implies that the

second smallest eigenvalue known as algebraic connectivity is positive if and only

if G is connected. There exist many important theorems about laplacian matrices

and in many problems in physics and chemistry they play a central role. The reader

is referred to [30,31,27,29] for surveys on this topic.

The spectrum of a graph’s laplacian matrix is obtained from its eigendecomposi-

tion. Specifically, the eigendecomposition of a laplacian matrix is L(G) = PΛP T ,

where Λ = diag (λ1, λ2, . . . , λ|V |) is the diagonal matrix with the eigenvalues in

increasing order and P = (p1|p2| . . . |p|V |) is the matrix with the ordered eigenvec-

tors as columns. The laplacian spectrum is the set of eigenvalues {λ1, λ2, . . . , λ|V |}.

The spectrum is permutation-invariant, i.e., two isomorphic graphs have the same

set of sorted eigenvalues. However, the converse is not true, as two graphs that have

the same spectra are not necessarily isomorphic.

Two graphs are called cospectral (or, isospectral) if they have the same eigenval-

ues. Previously, Godsil and McKay [16] and more recently Haemers and Spence [19]

have shown that the laplacian matrix has more representational power than the

1 The laplacian matrix is also called Kirchhoff matrix or the matrix of admittance in the
literature.

9

adjacency matrix, in terms of resulting in less number of cospectral graphs. Ac-

cording to the results given in [19], of more than a billion graphs with 11 vertices

characterized by the adjacency matrix, approximately 21% is cospectral, while this

fraction is only 9% for the laplacian matrix. As specific graph classes, trees were

also investigated for cospectrality by Zhu and Winson [48]. The authors report that

out of more than two million trees with 21 vertices, 21.3% of them do not have

a unique adjacency spectrum. With the laplacian spectrum, this ratio decreases to

0.05%. Overall, these studies show that the laplacian spectrum is more representa-

tive and more informative than the adjacency spectrum. Our main motivation for

constructing the graph characterizations using the laplacian spectrum comes from

these studies.

3 Encoding The Graph Structure for indexing

3.1 Indexing Formulation

Given a query and a large database, our objective in an indexing mechanism is

to efficiently retrieve a small set of candidates, which share topological similarity

with the query or one of its subgraphs. We assume that the database graphs are

known in advance and the query graph is given at run time only. If the graph has

a rich structure in terms of diameter and branching factor, a novel encoding of its

topology can be used as an index into a large graph database. In our framework,

we encode the topology of a graph through the laplacian spectrum. Specifically,

sorted eigenvalues of the laplacian matrix are assigned to the graph as its signature.

To compute the similarity between two graphs, we compute the Euclidean distance

between their signatures, which is inversely proportional to the structural similarity

10

of the graphs. For a given query, retrieving similar graphs can be reduced to a

nearest neighbor search among a set of points. Note that it is important to construct

the signatures using the sorted eigenvalues, as the kth smallest eigenvalue reflects

specific information about the graph, e.g., the relation between the second smallest

laplacian eigenvalue λ2 and the diameter, mean distance, minimum degree, and

algebraic connectivity of the graph. See the papers [14,32,30,31,27,29] for details

about the relations between the laplacian spectrum and the graph structure.

Unfortunately, the above formulation cannot support occlusion or segmentation

errors: two graphs may share similar structures up to only some level. Although

adding or removing graph structure changes the laplacian spectrum, the spectrum

of the subgraphs that survive such alteration will not be affected. Therefore, our in-

dexing mechanism cannot depend on the signature of the whole graph only. Instead,

we will combine the signatures of the subgraphs with our indexing mechanism.

3.2 Local Indexing

Let G = (V, E) be a graph and let G′ be a graph obtained from G by adding a new

edge e′ such that e′ /∈ E. Then the following theorem, known as the interlacing

theorem, relates the laplacian spectrum of both graphs 2 .

Theorem 1 The eigenvalues of G and G′ interlace:

0 = λ1(G) = λ1(G
′) ≤ λ2(G) ≤ λ2(G

′) ≤ . . . ≤ λn(G) ≤ λn(G′).

2 This theorem is obtained by Courant-Weyl([11], Theorem 2.1). The reader may also refer
to [18].

11

In addition, it is known that ∑n
i=1(λi(G

′) − λi(G)) = 2 [1]. Therefore, at least one

inequality is strict. Overall this theorem implies the following. Assume that we are

given a pair of isomorphic graphs g1 and g2. If we construct G1 and G2 out of g1 and

g2 by adding different edges to each of them, one at a time, the laplacian spectra of

G1 and G2 become proportionally less similar. As a result, the similarity between

the signatures of G1 and G2 may not reflect the similarity between the signatures of

their subgraphs g1 and g2. Therefore, constructing the indexing mechanism based

on graph signatures is too weak. An ideal indexing framework should, in fact, se-

lect candidate database elements based on both local and global similarities. To

account for local as well as global information in our framework, we will adopt the

following method analogous to that used in the decision tree approach [28].

For a given database graph G = (V, E), rather than storing its signature in the

system only, we compute the signatures of each subgraph of G in our algorithm.

In this process, we gradually increase the size of the subgraphs. Since the sorted

eigenvalues are invariant under consistent re-orderings of the graph’s vertices, it is

sufficient to compute the spectrum of permutation-similar matrices once. This prop-

erty avoids the need for a high-load compilation process described for adjacency

matrices in the decision tree approach.

Associated with each signature in the system is a pointer to the corresponding graph

or subgraph in the database. At runtime, we first generate the signature of each sub-

graph of the query. Given a query signature sq, we then retrieve its nearest neighbors

of the same size from the database through a nearest neighbor search (see Figure 1).

Each neighbor of sq retrieved from the database gets a vote whose value is inversely

proportional to the distance from sq. Thus, as a result, each signature of the query

generates a set of votes. Moreover, we weigh the votes according to the size of the

subgraphs corresponding to the signatures, i.e., the bigger the size, the more weight

12

.

.

.

.

.

.

.

g1

gl

sl

s1

(a) (b) (c) (d)

s1

sl

.

.

.
gO(2|V |)

.

.

.

.

sO(2|V |)

.

.

.

.

.

.

sO(2|V |)

G = (V,E)

Fig. 1. Retrieving similar graphs. For graphs given in Part (a), its subgraphs are constructed
in Part (b). A signature is computed for each subgraph in Part (c). Given a signature, re-
trieving its similar graphs from a large database is formulated as a nearest neighbor search
as shown in Part (d).

the vote receives. To collect these votes, we will use the following strategy.

Let Sq = {sq1, . . . , sqm} be the set of query signatures. For a particular signature

sqi ∈ Sq, let Nsqi
= {n1, . . . , nk} be the set of elements returned by the nearest

neighbor search and let |sqi| denote the size of its corresponding subgraph. (|sqi| =

|nj| for j = {1, . . . , k}). We compute the weight of the vote between sqi and a

signature sdi corresponding to a database (sub)graph as follows:

Wsqisdi
=































|sqi|

1+||sqi−sdi||2
if sdi ∈ Nsqi

,

0 Otherwise.

(1)

Given a query Gq = (Vq, Eq) and a database graph Gd = (Vd, Ed) of size |Vq| and

|Vd| respectively, let Sk
q denote the set of signatures for subgraphs of size k of the

query graph, and let Sk
d be this set for the database graph. For a certain size k, the

weight of the votes based on Sk
q and Sk

d is computed using the directed Hausdorff

13

distance as follows:

h(Sk
q , Sk

d) = max
sqi∈Sk

q

{ min
sdi∈Sk

d

{Wsqisdi
}}. (2)

However, since h(Sk
q , Sk

d) is not symmetric, the average of h(Sk
q , Sk

d) and h(Sk
d , Sk

q)

is taken:

H(Sk
q , Sk

d) = (h(Sk
q , Sk

d) + h(Sk
d , Sk

q))/2. (3)

The total weight of the votes accounting for both local and global similarities is

then computed as:

WSqSd
=

min(|Vq |,|Vd|)
∑

j=1

H(Sj
q , S

j
d). (4)

After performing a nearest neighbor search around the query signatures, we com-

pute the weights of the votes between the query and the database graphs having at

least one signature as the nearest neighbor of the query. We then sort the database

graphs based on these weights. In this process, we only add the sufficiently high-

support database graphs to the indexing hypothesis. Since a small number of struc-

turally different graphs may also share the same laplacian spectrum, each graph

in the hypothesis should still be verified by some matching algorithm. Despite the

fact that such graphs may exist in the indexing hypothesis, the number of them is

very small. In addition, based on Theorem 1, not only do isomorphic graphs share

the same signature, non-isomorphic but similar graphs or subgraphs have close sig-

natures in the vector space. The database, therefore, can be pruned without losing

structurally similar graphs. The complexity of algorithm is presented in the next

section.

14

3.3 Complexity Analysis

Let us first analyze the computational complexity of the signature generation for the

database graphs, which is a preprocessing step performed offline. Let nd denote the

maximum number of vertices in a database graph. Given a single graph, the total

number of its subgraphs of size k is O
((

nd

k

))

. Assume that there are m graphs in

the database, the total number of signatures generated by the framework is bounded

by

m ×
nd
∑

k=0

(

nd

k

)

= O(m × 2nd).

Notice, however, that during the signature generation for database graphs, the actual

number of subgraphs for which we compute signatures is strictly less than m ×

∑nd

k=0

(

nd

k

)

, since our signature is permutation invariant. In addition, subgraphs of

size 2 and 3 are considered too small to represent a significant part of the original

image. We generate signatures of subgraphs starting from size 4 in the framework.

On retrieval, we perform an approximate nearest neighbor search for each query

signature, using a balanced-box decomposition tree (BBD-tree) as introduced by [2].

Given any positive real ε, a signature is an (1 + ε)-approximate nearest neighbor

of the query signature sq if its distance from sq is within a factor of (1 + ε) of the

distance to the true nearest neighbor. In general, given an integer k ≥ 1, (1 + ε)-

approximations to the k nearest neighbors of sq can be found using a BBD-tree in

O(kd logn) time, where d is the dimension of the search space.

Thus, for a query subgraph of size nq, the total running time Tnq
of a k-nearest

neighbor search using is

Tnq
= O

(

knq log

(

m ×

(

nd

nq

)))

.

15

4 More Efficient Indexing through Spectral Integral Variation

The local indexing procedure described above requires individual computation of

the laplacian spectrum for each subgraph. Although for database graphs known a

priori this process is performed offline, in applications where new database entries

are being inserted frequently, this step plays an important role in the efficiency of

the whole system. In this section, we draw on recent-developed techniques from

the domain of spectral integral variation to avoid the individual computation of the

laplacian spectrum for each subgraph. Specifically, we will study the effect on the

laplacian spectrum when an edge is added into graph G = (V, E). Let G + e be

a graph obtained by adding an edge e = (u, v) into G such that {u, v} ∈ V and

e /∈ E. Our interest in this topic is motivated by its ability to identify the changed

eigenvalues of graph G, and therefore to generate the laplacian spectrum of graph

G+e without computing them. Before we focus on this topic, let us first reconsider

Theorem 1, which shows that when an edge is added into the graph, none of its

laplacian eigenvalues can decrease, while the trace of the laplacian matrix increases

by 2. This important observation implies that given the laplacian spectrum of G, one

can estimate the ranges of eigenvalues for G + e. The concept of spectral integral

variation, on the other hand, provides more information.

It is shown in [41] that if an edge is added to a graph and the laplacian spectrum

changes by integer quantities, there can only be two possibilities: either one eigen-

value increases by 2 (and n − 1 eigenvalues remain fixed) or two eigenvalues in-

crease by 1 (and n−2 eigenvalues remain fixed). These two cases are called spectral

integral variation in one place and spectral integral variation in two places, respec-

tively. The following lemma characterizes these two possible situations.

16

Fig. 2. Spectral integral variation in one and two places are shown in Part (a) and (b),
respectively. Bottom graphs are formed by adding one edge to the graphs shown at the top.
The laplacian spectrum is written below each graph. Observe that while only one eigenvalue
increases by 2 in part (a), two eigenvalues increase by 1 in part (b).

Lemma 1 Let G = (V, E) be a graph with |V | = n vertices and Γ(G) = (λ1, λ2, . . . , λn)

be its laplacian spectrum. The spectral integral variation of G by adding an edge

e /∈ E occurs only in the following two cases:

(1) The spectral integral variation occurs in one place, and thus

Γ(G+e) = (Γ(G) \ λk) ∪ {λk + 2}, where k ∈ {1, 2, . . . , n}

(2) The spectral integral variation occurs in two places, and thus

Γ(G+e) = (Γ(G)\{λk, λl})∪{λk+1, λl+1}, where k, l ∈ {1, 2, . . . , n} and

k 6= l.

The proof for this lemma is given by Yizheng [46]. Part (a) and (b) of Figure 2

show two graphs where adding an edge results in spectral integral variation in one

and two places, respectively.

In our framework, we will identify the changed eigenvalue(s) when spectral inte-

17

gral variation occurs. This, in turn, will allow us to generate the laplacian spectrum

of G + e given that of G. In a somewhat related direction, there exists some work

on characterizing graphs stating that when an edge is added, (one of) the changed

eigenvalue is the algebraic connectivity [24,5]. Recall that the algebraic connectiv-

ity of a graph is defined as the second smallest laplacian eigenvalue.

Let G = (V, E) be a graph with |V | = n vertices. For u ∈ V , define N(u) =

{v ∈ V : (u, v) ∈ E}. Assume that e = (u, v) is added to G = (V, E) such

that e /∈ E. The following theorems characterize and identify the changed lapla-

cian eigenvalue(s) when spectral integral variation occurs in one and two places.

Theorem 2 appears in [41], while Theorem 3 is shown in [24].

Theorem 2 N(u) = N(v) if and only if the spectrum of L(G) overlaps the spec-

trum of L(G + e) in n − 1 places. Moreover, the laplacian eigenvalue of G that

increases by 2 is given by the degree of vertex u (or, that of vertex v) in this case.

For the following theorem, suppose that the degrees of vertices u and v are shown

by du and dv, respectively, and let t denote the number of vertices that are adjacent

to both vertex u and vertex v. Without loss of generality, suppose also that du ≥

dv. Furthermore, let 1x, 0x denote the x × 1 matrices whose entries are all 1,0,

respectively, and let 1t
x, 0

t
x denote their transposes.

Theorem 3 Let laplacian matrix L of graph G be given by

18

L =



































































du 0 −1t
x 0t

x −1t
x 0t

x

0 dv 0t
x −1t

x −1t
x 0t

x

−1x 0x L11 L12 L13 L14

0x −1x L21 L22 L23 L24

−1x −1x L31 L32 L33 L34

0x 0x L41 L42 L43 L44



































































,

where the blocks l11, l33, l33, L44 are of sizes du − t, dv − 1, t, and n − 2 − du −

dv + t, respectively. Spectral integral variation occurs in two places if and only if

the following conditions hold:

L111x − L121x = (dv + 1)1x, (5)

L211x − L221x = −(du + 1)1x, (6)

L311x − L321x = −(du − dv)1x, (7)

L411x − L421x = 0. (8)

In the case that conditions (5)-(8) are satisfied, then the two eigenvalues of L that

19

increase by 1 are

λ1 =
du + dv + 1 −

√

(du + dv + 1)2 − 4(dudv + t)

2
(9)

and

λ2 =
du + dv + 1 +

√

(du + dv + 1)2 − 4(dudv + t)

2
. (10)

After identifying the changed laplacian eigenvalues when spectral integral variation

occurs, we perform the following process for each given database graph offline.

Suppose that the minimum number of edges in a subgraph for which we compute

the signature is k. Given a database graph G = (V, E), we first create its subgraph

Ĝ with |V | vertices and k edges and compute its laplacian eigenvalues. Since the

second smallest laplacian eigenvalue is positive if and only if the graph is con-

nected and the multiplicity of zero as a laplacian eigenvalue reflects the number of

connected components, only the positive eigenvalues of Ĝ are used as the signa-

ture. Next, when we add an edge to Ĝ, we check whether spectral integral variation

occurs and if so, we generate the eigenvalues using the theorems given above. We

then repeat this process and consider all distinct subgraphs until the whole graph

is constructed. At run time, we also apply the same procedure to construct the sig-

natures for query graphs. The algorithm is shown in Figure 3. Although the above

formulation enables us to identify the changed laplacian eigenvalues when they are

increased by integer quantities, our empirical results show that it speeds up the sig-

nature generation step for database with 1440 graphs known a priori by 6.47%. We

will present our report on this part in Section 5.

In retrospect, our encoding of a graph’s structure captures its local topology, thus

20

Input: G = (V, E), Ĝ = (V, Ê), and Γ(Ĝ)

Output: The laplacian spectrum Γ(Ĝ) for every distinct subgraph Ĝ of G

Algorithm Generate Spectra (G = (V, E), Ĝ = (V, Ê), Γ(Ĝ))
if Ê == E then terminate
for every distinct subgraph Ĝ = (V, Ê) of G = (V, E), where

Ê = Ê ∪ {e : e ∈ E, e /∈ E ′}
if spectral integral variation occurs in one place then

generate Γ(Ĝ) according to Theorem 2
else if spectral integral variation occurs in two places then

generate Γ(Ĝ) according to Theorem 3
else compute Γ(Ĝ)

endfor
call Generate Spectra (G = (V, E), Ĝ = (V, Ê), Γ(Ĝ))

end

Fig. 3. Generating laplacian spectra through spectral integral variation.

allowing for its use in the case of occlusion and segmentation errors. Furthermore,

the signature of a graph is invariant under the reorderings of its vertices. This, in

turn, allows us to compare the signatures of a large number of graphs without solv-

ing the computationally expensive correspondence problem between their vertices.

Since we generate signatures of each subgraph to account for the local topology,

there is a high computational complexity associated with the generation of the sig-

natures for the database graphs, as shown in the previous section. This complexity,

however, can be reduced by considering subgraphs starting from some predefined

size and in practice it is further lowered by employing the concept of spectral inte-

gral variation.

5 Experiments

To examine the fitness of the new indexing framework, we have performed a num-

ber of experiments using an extensive set of recognition trials in the domain of 2-D

21

and 3-D object recognition. The experiments, including a comparison with a com-

peting indexing method using two different graph-based object representations and

the results for a set of occluded queries, are presented below. We first perform our

experiments using silhouettes. For a given shape, its silhouette is represented by

an undirected shock graph [40]. The graph is constructed from the discrete skele-

ton using the method described in [13]. To summarize this process, a shock point

p on the discrete skeleton is labeled by a 3-dimensional vector v(p) = (x, y, r),

where (x, y) are the Euclidean coordinates and r is the radius of the maximal bi-

tangent circle centered at the point. Each shock point becomes a node in the graph

and edges connect nearby shock points. An illustration of this procedure is given

in Figure 4, where the left portion shows an input image taken from the database,

while the right portion presents the constructed shock graph superimposed on top

of the image.

We used the MPEG-7 dataset CE-Shape-1 part B for this representation type. The

MPEG-7 database consists of 70 classes and 20 shapes per class. The top of Fig-

ure 5 shows a few sample classes, while the bottom of the figure presents different

shapes taken from a particular class.

We also conduct our experiments in the domain of 3D object recognition using

Reeb graphs. These graph representations allow for topological properties to be

Fig. 4. Left: a view of a bat. Right: the shock graph constructed from the medial axis and
superimposed on the left image.

22

Fig. 5. Sample images of the MPEG-7 database are shown in the top row. The bottom row
represents a set of different shapes of a particular class from the database.

represented in a coarse sense. Let f : S → R be a real-valued function on surface

S. The Reeb quotient space is defined by the equivalence relation ∼ given by:

(α, f(α)) ∼ (γ, f(γ)) for α, γ ∈ S iff f(α) = f(γ) and α, γ are in the same

connected component of f−1(f(α)). This means two points (α, f(α)) and (γ, f(γ))

are represented as the same node in the Reeb graph if values of f are the same

and they belong to the same connected component of the inverse image of f(α)

(or, equivalently f(γ)). The Reeb quotient space is coded in a Reeb graph such

that the vertices represent critical points of function f , while the edges show the

connections between them. See [3,20,9,6,7] for details. The right of Figure 6 shows

a Reeb graph constructed for the image shown in the left.

The second database used in the experiments consists of Reeb graphs constructed

for the McGill 3D Shape Benchmark [47]. The database consists of 420 objects

Fig. 6. The Reeb graph constructed for the object on the left is shown on the right.

23

Fig. 7. Views of sample objects from the McGill 3D Shape Benchmark.

classified in 19 classes. Figure 7 shows representative views of objects from the

database.

We first represent each object in each database as a graph. Given a graph, we com-

pute the signatures for each of its subgraphs and populate the resulting signatures in

the vector space. In our experimental setup, we applied the following leave-one-out

procedure to the datasets to evaluate the framework. We initially remove the first

graph from the database and use it as a query for the remaining database graphs.

The graph is then put back in the database, and the procedure is repeated with the

second graph from the database, etc., until all database graphs have been used as a

query.

There exist several performance measures to assess the quality of a retrieval sys-

tem or indexing mechanism. Precision and recall are two well-known examples.

In some applications high precision is necessary, meaning that the relevant items

that are returned must be at the top of the ranking. In some other applications,

however, high recall is preferred, meaning that false negatives are to be avoided

24

(the returned result must contain all or the most relevant objects). A good indexing

system should, in fact, perform well according to both of these two measures. We

conducted two sets of experiments to cover both scenarios. In the first experiment,

the class of the query should be determined quickly (best match must appear high

in the ranking). In the second experiment, all the objects belonging to the query

class should be returned in a small candidate set.

For each query, the database graphs are ranked in decreasing order of vote weights

in these experiments. Here, we consider the top highest-weight candidates. We

say that our indexing system is effective, if at least one graph belonging to the

same class as the query is among such candidates. A qualitative measure, there-

fore, should be based on the smallest size of the candidate list containing one im-

age from the query class. According to the results of this experiment, in 37.3%

of the cases, the highest-weight database graph belongs to the correct shape class

for shock graphs and this ratio is 29.6% for Reeb graphs. Moreover, the average

position of the closest matching graph among the highest-weight candidates is 7.4

and 4.3 for shock and Reeb graphs, respectively. In addition, the worst position of

the closest matching graph is 12 for shock graphs, while this number is 9 for Reeb

graphs. These results present that to determine the correct class of the query, more

than 99% and 97% of shock and Reeb graph datasets can be pruned by our indexing

mechanism.

While the previous evaluation method is suitable for classification tasks, in some

retrieval applications, however, it is a prerequisite to retrieve all images from the

database that belong to the query class. In the second experiment, the system’s

performance is evaluated by computing the total number of retrieved images that is

necessary to retrieve the entire query class (maximum minimal scope). Our results

show that the first 134 of the candidate return set always contains all the graphs

25

belonging to the query class for shock graphs; this number is 54 for Reeb graphs.

This indicates that for this task our framework prunes more than 90% and 87% of

the shock and Reeb graph datasets, respectively. In other words, the recall in each

dataset is 100% if the scope is set to the first 10% and 13% of the sorted candidate

models for shock and Reeb graphs respectively. In Figure 8, we show percentage

recall values for various scopes for shock and Reeb graph datasets.

The experimental results presented above clearly show the efficiency of the pro-

posed indexing framework using different graph-based object representations. We

now compare the performance of our method to other indexing frameworks on

the same datasets. For this purpose, we first compare our results to that of an in-

dexing system in which the graph signatures are generated using the eigenvalues

for adjacency matrices. The experiments are identical to the ones described above.

The results along with our scores are shown in Table 1, and reveal that our in-

dexing framework outperforms the indexing system with adjacency eigenvalues

in all criteria mentioned above. These results confirm that graph characterizations

through laplacian matrices are more powerful and more informative than that of ad-

jacency matrices. Representing graphs by laplacian eigenvalues, therefore, is more

effective than that by adjacency eigenvalues. Additionally, we also compare our in-

Fig. 8. Percentage recall values for various top ranked highest-weight candidate graphs for
shock graphs of MPEG-7 and Reeb graphs of McGill datasets.

26

CRITERIA HW(%) AP WP MMS PC(%) PI(%)

SHOCK GRAPHS - LAPLACIAN 37.3% 7.4 12 137 99% 90%

REEB GRAPHS - LAPLACIAN 29.6% 4.3 9 54 97% 87%

SHOCK GRAPHS - ADJACENCY 18.02% 19.1 23 257 97% 82%

REEB GRAPHS - ADJACENCY 17.3% 10.2 22 92 94% 78%
Table 1
Results for indexing system constructed using eigenvalues for Laplacian and Adjacency
matrices. HW: Percentage of highest-weighted graph belonging to the same class as the
query, AP: Average position of the closest matching graph from the query class, WP: Worst
position of the closest matching graph from the query class, MSS: Maximum minimal
scope, PC: Percentage of database that can be pruned to determine the right query class, PI:
Percentage of database that can be pruned to retrieve all instances of the query.

dexing framework to the one presented in [38]. This indexing algorithm was used

in [47] on a subset of the McGill dataset with the object parts represented by di-

rected acyclic graphs (DAG) through medial surfaces [39]. The subset of the McGill

dataset used in this experiment includes a total of 320 exemplars taken from several

object classes (hands, humans, teddy bears, glasses, pliers, tables, chairs, cups, air-

planes, birds, dolphins, dinosaurs, four-legged animals, and fish). To be consistent

with the test in [47], we also merge the categories “four-legged” and “dinosaurs”

into a broader class, “four-limbs”. The results reported in [47] indicate that on av-

erage 70% of the models that are in the same class as the query are in the top 80

(25 % of 320). Moreover, for 9 out of these 13 object classes, all instances of the

query are in the top 80. Our results, on the other hand, show that 100% of the query

classes are always in the top 48 (15 % of 320). The improvement clearly demon-

strates the better efficacy obtained by the proposed indexing framework. We believe

that the improvement is due to 1) the more powerful representation of laplacian ma-

trices, 2) the more effective signature construction by our algorithm, i.e., low loss

of uniqueness in the signature, and, 3) the better way of encoding local topology.

Our next set of experiments deals with measuring the time efficiency of the index-

27

ing framework when spectral integral variation is used during the signature gen-

eration for database graphs. Although these signatures are computed offline, for

dynamic datasets where a new graph is likely to be added later, the time we spent

in this process plays an important role. For each of the datasets, we generate graph

signatures with and without spectral integral variation and measure the time taken

in each case. We should note here that involving spectral integral variation in the

framework does not change the effectiveness of the indexing system. According to

the results, we observe that 47.3 and 115.8 minutes were spent to generate all sub-

graphs to be represented in the vector space for Reeb and Shock graph datasets on

an Intel(R) Pentium(R) 4 CPU 3.00GHz computer. After involving spectral integral

variation in the framework, the time we spent in this process decreases to 45.5 and

108.3 minutes, respectively. These results indicate that 1.8% and 6.47% time im-

provements are gained with spectral integral variation for these two datasets. One

would expect that as the size of the database increases, the framework with spectral

integral variation would yield an improved time efficiency. While the database size

is an important factor, the number of laplacian integral graphs (graphs whose lapla-

cian spectrum consists entirely of integers) in the database also effects the overall

efficiency of the system using spectral integral variation. Balińska et al. [4] present

an important survey on integral (graphs whose adjacency spectrum consists entirely

of integers) and laplacian integral graphs. The authors observe that such graphs can

be found in all classes of graphs and among graphs of all orders.

Finally, to evaluate the fitness of our approach for dealing with occlusion in im-

ages, we generated 14 occluded scenes, each with two images selected from dif-

ferent classes in the MPEG-7 dataset. In each scene, one shape occludes the other

to a certain extent. The percentage of the occlusion varies from 2% to 16%, with

on average 6.0%. Each of these 14 new scenes was used as a query against the

28

complete database. We define our indexing schema to be effective if one of the

shapes of the query appears in the highest vote-weight candidates. The results of

this experiment is presented in Figure 9, where the left column shows the occluded

query images and the top ten candidates sorted by weight from left to right appear

in each row. The average position of the closest shape belonging to the class of

either of the query shapes was recorded as 1.7 in this experiment. We should point

out that our signatures represent topological structures. Thus, images from differ-

ent classes but with similar topologies may be assigned high weights. To give an

example, consider the top row, where the query consists of occluded shapes of a

spoon and pencil. While neither a spoon nor a pencil is similar to a butterfly, the

current combination of them in the query becomes similar to the butterfly retrieved

as the highest rank. Shapes belonging to different classes, therefore, may be ranked

high in the candidate list.

It should be noted that both shock and Reeb graph experiments can be considered

as worst-case for two reasons. First, one may argue that the MPEG-7 and McGill

datasets are not the ideal testbeds for an indexing algorithm. Some classes (espe-

cially in MPEG-7) are very close to each other (such as ten different device classes)

and they can, in fact, be grouped into a broader class. As a result, performing such

a grouping operation will improve the overall quality of the framework. Second,

since our signatures are constructed based on graph topology, evaluating these re-

sults such that the graph topology is taken into consideration would yield even

better performance. Thus, in addition to checking if the shapes corresponding to

the query and the highest-weight candidate graphs belong to the same object class,

we might also consider the possibility that two graphs from two different object

classes may, in fact, be close in terms of their topologies. We expect that the evalu-

ation of our results using a distance matrix created by a matching algorithm, which

29

Fig. 9. Results of occlusion experiments. The leftmost column shows the occluded query
scenes for each row, while the top ten ranked candidate models are shown on the right, in
the decreasing order of weight. An image inside a box indicates that it belongs to the class
of one of the query shapes. Images belonging to different classes but are topologically
similar to the query are ranked high in the candidate list.

30

takes into account the topology, will produce even better scores.

6 Conclusions and Future Work

In this paper, we have proposed a novel, graph-based indexing method using the

eigenvalue characterization of laplacian matrices. The sorted eigenvalues of the

laplacian matrix of a graph G = (V, E) become the components of an O(|V |)-

dimensional vector. A nearest neighbor search around this vector returns graphs

that are similar to G. This implies that no graph isomorphism is required; our

method retrieves those graphs that are similar in terms of their topologies. To ac-

count for partial similarities, we create signatures for subgraphs of G. We draw

from recently-developed techniques in the field of spectral integral variations to

overcome the problem of computing the laplacian spectrum for every subgraph in-

dividually.

By using the laplacian spectrum as a signature, we capture the graph topology to a

large extent. The signature of a graph is invariant under the reorderings of its ver-

tices. This, in turn, allows us to compare the signatures of a large number of graphs

without solving the computationally expensive correspondence problem between

their vertices. Although determining graphs that can uniquely be defined by their

graph spectra is a difficult problem [12], we showed in this paper that represent-

ing graphs by their laplacian spectra is more discriminating than that by adjacency

spectra.

Our framework can index any multimedia database where objects can be repre-

sented as graphs. We have successfully evaluated the approach on several databases

using two different graph-based object representations. Moreover, the approach

31

compares favorably to a leading indexing algorithm. We also demonstrated the ro-

bustness of the proposed framework on a set of occlusion experiments.

An increasing number of applications use indexing systems for fast selection of

candidate elements. Although we applied our method to shape indexing in this

paper, we will test the framework to some other applications with a particular in-

terest to layout indexing. In a typical layout indexing problem, a query and a set

of database images, each with multiple shapes, are given. For a given query im-

age, one would like to efficiently retrieve images, which not only contain similar

shapes to those in the query, but similar layouts as well. Extension of our method

to both shape and layout indexing in a unified framework is one of our interests in

the future.

Additionally, we plan to extend our work in a number of ways. We will first in-

corporate geometric information in the indexing system. Thus, both geometric and

topological similarities will be taken into account during the process of fast candi-

date selection. We believe that this important addition will make the whole system

more effective. Rather than evaluating our results using the classification performed

on the original dataset, we will use different sets of existing matching algorithms

and measure the fitness of the framework with respect to these matching results. In

addition, we plan to conduct a more comprehensive comparison of our approach

to more leading indexing algorithms, including a test regarding the time efficiency

of each system. Since our framework computes a proper topological similarity be-

tween graph pairs, one of our future goals is also to design a matching approach

based on a similar idea. We will not only compute the similarity value between

graphs, but also find the node correspondences using both topology and geometry.

32

7 Acknowledgements

The authors acknowledge the support provided by FP6 IST projects 511572-2

PROFI and 506766 AIM@SHAPE. The authors would also like to thank Simone

Marini for his Reeb graph representations and Esther Moet and Dennis Nieuwen-

huisen for careful proofreading.

References

[1] W. N. Anderson and T. D. Morley. Eigenvalues of the laplacian of a graph. Linear and

Multilinear Algebra, 18:141–145, 1985.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. Journal of

the ACM, 45(6):891–923, 1998.

[3] M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven

retiling. The Visual Computer, 19(2-3):127–138, 2003.

[4] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, and D. Stevanović. A survey

on integral graphs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13:42–65, 2002.

[5] S. Barik and S. Pati. On algebraic connectivity and spectral integral variations of

graphs. Linear Algebra and its Applications, 397:209–222, 2005.

[6] S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04:

Proceedings of the Shape Modeling International 2004 (SMI’04), pages 371–374,

Washington, DC, USA, 2004. IEEE Computer Society.

[7] S. Biasottia, S. Marini, M. Spagnuoloa, and B. Falcidieno. Sub-part correspondence

by structural descriptors of 3d shapes. Computer-Aided Design, 38(9):1002–1019,

September 2006.

33

[8] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler, and H. Zhang. An

eigenspace update algorithm for image analysis. Graphical models and image

processing: GMIP, 59(5):321–332, 1997.

[9] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops

in reeb graphs of 2-manifolds. Discrete and Computational Geometry, pages 231–244,

2004.

[10] M.S. Costa and L.G. Shapiro. Relational indexing. In SSPR, pages 130–139, 1996.

[11] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application.

VEB Deutscher Verlag der Wissenschaften, Berlin, 2nd edition, 1982.

[12] E. R. V. Dam and W. H. Haemers. Spectral characterizations of some distance-regular

graphs. Journal of Algebraic Combinatorics, 15(2):189–202, 2002.

[13] F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, and S. Dickinson. Object

recognition as many-to-many feature matching. International Journal of Computer

Vision, 69(2):203–222, 2006.

[14] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematics, 23:298–

305, 1973.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[16] C.D. Godsil and B.D. McKay. Constructing cospectral graphs. In Aequationes

Mathematicae, pages 257– 268, 1982.

[17] D. B. Goldgof, H. L., and T. S. Huang. Matching and motion estimation of three-

dimensional point and line sets using eigenstructure without correspondences. Pattern

Recognition, 25(3):271–286, 1992.

[18] R. Grone, R. Merris, and V. S. Sunder. The laplacian spectrum of a graph. SIAM

Journal on Matrix Analysis and Applications, 11:218–238, 1990.

34

[19] W. H. Haemers and E. Spence. Enumeration of cospectral graphs. Eur. J. Comb.,

25(2):199–211, 2004.

[20] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully

automatic similarity estimation of 3d shapes. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages 203–

212, New York, NY, USA, 2001. ACM Press.

[21] C. M. Hoffmann. Group-theoretic algorithms and graph isomorphism. Springer-

Verlag, Berlin, 1982.

[22] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs. In STOC ’74: Proceedings of the sixth annual ACM symposium on Theory of

computing, pages 172–184, New York, NY, USA, 1974. ACM Press.

[23] R. Horaud and T. Skordas. Structural matching for stereo vision. In Nineth

International Conference on Pattern Recognition, pages 439–445, 1988.

[24] S. Kirkland. A characterization of spectral integral variation in two places for laplacian

matrices. Linear and Multilinear Algebra, 52(2):79–98, 2004.

[25] S. W. Lee and J. H. Kim. Attributed stroke graph matching for seal imprint verification.

Pattern Recognition Letters, 9:137–145, 1989.

[26] S. W. Lu, Y. Ren, and C.Y. Suen. Hierarchical attributed graph representation and

recognition of handwritten chinese characters. Pattern Recognition, 24(7):617–632,

1991.

[27] R. Merris. Laplacian matrices of graphs: a survey. In Linear Algebra Applications,

volume 199, pages 381–389, 1994.

[28] B.T. Messmer and H. Bunke. A decision tree approach to graph and subgraph

isomorphism detection. Pattern Recognition, 32(12):1979–1998, 1999.

35

[29] B. Mohar. The laplacian spectrum of graphs. In Sixth International Conference on the

Theory and Applications of Graphs, pages 871–898, 1988.

[30] B. Mohar. Laplace eigenvalues of graphs: a survey. Discrete Math., 109(1-3):171–183,

1992.

[31] B. Mohar. Some applications of laplace eigenvalues of graphs, 1997.

[32] S. Pati. The third smallest eigenvalue of the laplacian matrix. Electronic Journal of

Linear Algebra, 8:128–139, August 2001.

[33] D.H. Rouvray and A.T. Balaban. Chemical applications of graph theory. In

Applications of Graph Theory, pages 177–221, New York, 1979.

[34] S. Sclaroff and A. Pentland. Modal matching for correspondence and recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):545–561,

1995.

[35] K. Sengupta and K. L. Boyer. Modelbase partitioning using property matrix spectra.

Computer Vision and Image Understing, 70(2):177–196, 1998.

[36] L. G. Shapiro and R. M. Haralick. Organization of relational models for scene analysis.

IEEE Trans. Pattern Analysis and Machine Intelligence, 4(11):595–602, November

1982.

[37] L. S. Shapiro and J. M. Brady. Feature-based correspondence: an eigenvector

approach. Image Vision Comput., 10(5):283–288, 1992.

[38] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S.W. Zucker. Indexing

hierarchical structures using graph spectra. IEEE Trans. Pattern Analysis and Machine

Intelligence, 27(7), 2005.

[39] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. The hamilton-jacobi

skeletons. International Journal of Commputer Vision, 48(3):215–231, 2002.

36

[40] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape

matching. International Journal of Computer Vision, 30:1–24, 1999.

[41] W. So. Rank one perturbation and its application to the laplacian spectrum of a graph.

Linear and Multilinear Algebra, 46:193–198, 1999.

[42] H. Sossa and R. Horaud. Model indexing: The graph-hashing approach. In Proc.

International Conference on Computer Vision and Pattern Recognition, pages 811–

814, 1992.

[43] A. H. Tewfik and M. Deriche. An eigenstructure approach to edge detection. IEEE

Transactions on Image Processing, 2(3):353–368, 1993.

[44] M. Turk and A.P. Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, 1991.

[45] E. K. Wong. Model matching in robot vision by subgraph isomorphism. Pattern

Recognition, 25(3):287–303, 1992.

[46] F. Yizheng. On spectral integral variations of graphs. Linear and Multilinear Algebra,

50(2):133–142, 2002.

[47] J. Zhang, K. Siddiqi, D. Macrini, A. Shokoufandeh, and S. J. Dickinson. Retrieving

articulated 3-d models using medial surfaces and their graph spectra. In International

Workshop On Energy Minimization Methods in Computer Vision and Pattern

Recognition, pages 285–300, 2005.

[48] P. Zhu and R. C. Wilson. A study of graph spectra for comparing graphs. In British

Machine Vision Conference, 2005.

37

