
1

 PROFI

Project number:
Project acronym:
Project Title:

FP6-511572
PROFI
Perceptually-Relevant Retrieval of Figurative Images

Deliverable No: D8.2

Title: Experimental results of Bayesian relaxation

Short description:

During this stage, the graph-matching framework to identify similar images using
components will be designed. Inside the proposed graph, each graph node will
represent an image component (edge segment or shape) and the graph edges will
represent the topological and directional features between components. The matching
framework will be designed using the Bayesian version of the Relaxation by
Elimination framework (Turner and Austin, 1999). Partner 2 (UoY) possess extensive
experience in applying this framework to several problems including chemical
structure matching and trademark search.

This framework consists of two main stages: making initial hypotheses about possible
matches; improving initial hypotheses using contextual information. During this
work, the required methods to perform these tasks, within the scope of the current
context, will be designed. UoY will supply a binary executable of the Relaxation by
Elimination algorithm. It will also share its experience in using this algorithm to solve
similar problems.

Due month:
Delivery month:
Partners owning:
Partners contributed:
Classification:

33
33
UoY
UoY
Restricted

Project funded by the European Community under the
“Information Society Technologies” Programme

2

PROFI

Perceptually-Relevant Retrieval of Figurative Images

Deliverable 8.2

Experimental results of Bayesian relaxation

Design the graph matching framework to identify similar images

Victoria Hodge, Mike Weeks, John Eakins
and Jim Austin

Advanced Computer Architectures Group

Department of Computer Science
University of York, York, UK

29th February 2008

3

Table of Contents

Work package 8 Objective 2... 4
Overview... 5
1 Introduction... 5
2 View generation and shape identification... 9

2.1 Scale Space representation.. 9
2.2 Gaussian Pyramids.. 9
2.3 Categorisation ... 10
2.4 View Generation ... 11

2.4.1 For region/line-based images.. 12
2.4.2 For texture/noisy images... 12

2.5 Results for view generation .. 13
2.6 Shape Identification .. 14

2.6.1 Similarity Pruning... 18
2.7 Results for perceptual shape finding... 18

3 The Graph Matching Framework.. 20
4 Evaluation ... 26

4.1 Data ... 26
4.2 Evaluation Framework.. 27

4.2.1 Score measures.. 34
5 Results... 36
6 Conclusion .. 40
References... 42
Appendix A... 44
7 File Formats in use by the Trademark Matcher .. 44

7.1 Database Files ... 44
7.1.1 imageX_local_raw .. 44
7.1.2 imageX_global_raw.. 45

Appendix B ... 47
8 The unprocessed images for Query 23285. (Query with lowest normalised recall)......................... 47
Appendix C ... 55
9 The unprocessed images for Query 23300. (Query with highest normalised recall)........................ 55

4

Work package 8 Objective 2

The following is the original objective of Work Package 8.2 as given in the project proposal document:

During this stage, the graph-matching framework to identify similar images using components
will be designed. Inside the proposed graph, each node will represent a node and the edges will represent
the topological and directional features between components. The matching framework will be designed
using the Bayesian version of the Relaxation by Elimination framework (Turner and Austin, 1999).
Partner 2 (UoY) possess extensive experience in applying this framework to several problems including
chemical structure matching and trademark search.

This framework consists of two main stages: making initial hypotheses about possible matches;
improving initial hypotheses using contextual information. During this work, the required methods to
perform these tasks, within the scope of the current context, will be designed. UoY will supply a binary
executable of the Relaxation by Elimination algorithm. It will also share its experience in using this
algorithm to solve similar problems.

Deliverables: D8.2 A report explaining the results of the experiments carried out to assess the retrieval
accuracy of the new methods.

5

Overview
In this report we focus on identifying similar trademark images using a graph matching framework. The pre-
processing task is to produce the data to represent each image to allow matching. The data (images) must then be
matched and, for a particular query image, the most similar images retrieved using a graph matching framework.
The report is self contained, in that it describes both the pre-processing used as well as the graph matcher. The
pre-processing systems are shared with the other parts of the PROFI project.

1 Introduction

There has recently been massive growth in the area of digital image processing. Examples of image
processing applications include archiving photographs, medical image analysis and trademark retrieval.
Content-based Image Retrieval (CBIR) is a sub-area of digital image processing where the aim is to
retrieve images from an image database that are similar to a query image. CBIR takes a query image
and attempts to find all matching images: images which might be deemed similar to the query image by
a human analyst. Trademark image searching and retrieval is potentially one of the most important
application areas for CBIR techniques. Trademarks have major commercial significance and form an
important part of any company’s intellectual property. There are many large and growing databases of
trademark images. These large databases need accurate and fast indexing and retrieval systems to allow
the trademark databases to be searched effectively. New trademarks need to be matched against the
existing database to ensure there is no copyright conflict. Searching for potentially conflicting
trademarks among databases comprising solely of image data is a difficult task [E00]. Different humans
perceive images differently [HEA06, HHEA06] and the trademark examiner has to judge whether any
feature of the query trademark could reasonably cause a member of the general public to confuse it with
an existing trademark.

In this report, we focus on the task of using computerised methods to match and retrieve trademark
images to produce a system that emulates human matching. Trademark systems generally represent the
image as a set of features which are stored in the image database along with the images. Query images
are then matched against the database of stored images using feature matching. To allow matching and
retrieval we need to find a suitable image representation format. This encompasses both the format of
the data and the way that data is represented.

Images may be represented globally (holistically) or split into components and represented either as a
collection of components, or as a set of individual components that may be matched individually. There
is also the question of the format of the data. There are various strategies adopted in the literature for
both the data and the organisation of the data. Kim and Kim [KK98] have adopted a global approach
using Zernike moments to capture the global properties of images. They use the distribution of moments
across the entire database to identify the significant features (moments) and then use these extracted
moments to calculate image similarity. Use of deformable image templates is another global approach
sometimes used [DP97]. The query image template is deformed to match with another image in the
database. Similarity is calculated using the similarity between two models after deformation and is
expressed as an energy function. However, the energy required to transform the template depends on
the complexity of the image and thus neglects the qualitative features of images. In Ciocca and
Schettini’s work [CS99] moments, a histogram of edge directions and wavelet coefficients form the
features. These global approaches compute the global similarity between the query and the database
trademark so, the retrieval system will not be robust if the query or database images consist of different
numbers of shapes as the number of shapes will affect the matching score. Local approaches include

6

Kato’s trademark retrieval system which employs a coarse local approach. It divides the images into a
series of square blocks (e.g. 8x8 pixels) and calculates the features of each of the blocks. However, this
ignores the edges and boundaries inherent in the image and is too coarse to give the desired accuracy.
Eakins et al. [ESB96] introduce the ARTISAN system based on principles deriving from Gestalt
psychology. The first system [ESB96] extracts the boundaries of the components of a trademark and
groups similar components into families. Image similarity is calculated using the distance between
feature vectors. Subsequent ARTISAN versions [ERE03] show improvements in the grouping phase, the
use of multi-resolution analysis to cope with texture and noise, and the introduction of a variety of shape
measures. However, the spatial relation between components within the same image is not considered.
We follow the theory of using a multi-resolution approach as this agrees with the psychology of human
matching (discussed next) but we also intend to incorporate a degree of shape relations into our system.
Jain and Vailaya [JV98] introduce a two phase system that uses moments and edge histograms in the
initial global phase to find candidate matches. There, the candidates are refined during the subsequent
matching phase using deformable template matching to compare the edge map of the query trademark
and the edge map of the candidate trademarks from the initial phase. We also use a two phase process
here but our two phases are focused on processing the image to produce multiple perceptual
representations and then matching these image representations using a graph matching framework.
Manmatha, Ravela and Chitti [MRC98] use both global and local features for trademark image retrieval.
They aim to capture both local and global similarity of images using features that describe different
levels (resolutions) of images. The use of features from different levels of images is an attractive feature
of this system and we aim to incorporate this multi-level approach into our system to allow images to be
matched at different representational levels.

Most experts agree that shape similarity is the most important determining factor for trademark image
similarity in humans [E00]. However, in humans, image similarity is not just determined by the
similarity of simple image shapes but also encompasses higher-level patterns (structures) made by the
individual shapes following the Gestalt principles such as similarity, proximity or continuity [G72]. In
Figure 1(a), the texture can effectively be ignored and treated as a solid area so that to a human, the two
triangles appear similar while in Figure 1(b) the image components are structured at a higher level as a
ring-shape so the humans view the three ring structures as similar even though the individual
components used to produce each of the three ring structure are quite different.

Figure 1. Examples of trademark groups considered similar: (a) presence or absence of texture (b)
similar overall image structure (ring-shape).

7

The principal aims of our computerised image matching and retrieval system are therefore: producing
image views with perceptual significance (similar to the views perceived by humans [HEA06,
HHEA06]) and mimicking Gestalt processing to match images. Thus, we introduce an approach for
matching and retrieving images which comprises two phases: 1) finding patterns (structures and shapes)
in trademark images at different perceptual levels emulating the Gestalt principles followed by 2)
matching images at different perceptual levels using sub-graph isomorphism, where the shapes from the
first phase form the data to represent the images.

In the first phase we would, for example, aim to represent both shapes in Figure 1(a) as triangles and
both shapes in Figure 1(b) as ring structures. The Gestalt principles refer to the shape-forming
capability of human vision. In particular, they refer to the visual recognition of structures and whole
shapes rather than just ‘seeing’ a simple collection of lines and curves as we demonstrated in Figure 1.
Hence a computerised image retrieval system must be able to identify and match the most salient aspects
of an image's appearance including: the image’s overall shape; the shapes of important image
components; or, shapes defined by perceptually significant groupings of components.

Finding perceptual structures and shapes requires generating image representations (views) at different
levels. This is a difficult task that requires a "semantic" level of understanding and a number of different
processing methods as no one technique is universally effective. By integrating a series of techniques,
we aim to overcome the limitations of each individual technique while exploiting their strengths. In
IBM's QBIC system [A95] each image in the database has multiple representations achieved through the
use of different feature spaces of an image rather than by generating new views at different scales.
French et al. [F03] introduce an image retrieval system that employs multiple image representations
using transformations of the different colour channels and then consolidates the results of matching the
different representations to produce a ranked list of results. We take our cue from French et al. [F03] and
generate multiple views of the image although here we are only interested in black/white or greyscale
images. We use scale space selection [L98] and Gaussian pyramids [BA83] to blur the image followed
by pixel clustering to extract the image structures at different levels and produce multiple
representations of the image (multiple image views). After clustering, we identify the shapes and
structures within the image views using edge segmentation and linking that obeys the Gestalt principles
of continuity and proximity. This produces a set of image views for each image and each view has a set
of edge segments and a set of shapes. These sets represent the edge segments and shapes present in the
image at different perceptual levels; they form the data representing the images which will be used by
the graph matching framework to match and retrieve images from the image database.

The second phase of the system aims to match and retrieve similar images. A global (feature based)
approach is sensitive to the number of components in the image which is undesirable, and trademark
images vary widely in the number of components. Therefore, we adopt a local, geometric based,
approach. As stated earlier, our aim is to mimic human similarity matching and the key component of
image similarity for humans is shape similarity. Therefore, our data comprises the shapes extracted
from the first phase, and the relationships between the edge segments from the first phase in a two level
system. To identify image similarity we use an evidence counting approach, coupled with graph
matching (employing the relaxation by elimination (RBE) technique). We match images at two levels:
using primitives and using shapes/structures. We represent our primitives by using the perceptual edge
segments and their respective relationships that were identified in the first phase. These segments form
the graph nodes and the three relationships: collinearity, proximity and corner represent the graph arcs.
A pair of nodes is connected by one or more appropriate arcs if the corresponding segments are related
(i.e. collinear, proximal or if they form a corner). For each shape/structure extracted from an image in

8

the first phase, we match shapes using vector similarity within the graph matcher. Shape matching also
uses RBE and incorporates the perceptual neighbourhood of the shape and evidence percolated up from
the primitive (edge segment) layer. This approach has been shown to outperform conventional
Euclidean distance scoring using feature vectors [A99]. The strength of match between two images is
then calculated by combining the evidence from primitive (edge segment) matching and higher-level
(shape/structure) matching to produce a single image view score with which the image views in the
database may be ranked.

The following sections describe our approach in detail. Section 2 provides an overview of the image
processing techniques we use: 2.1 Scale space selection to smooth (blur) images at appropriate kernel
sizes (scales), 2.2 Gaussian Pyramids to form a pre-processing step for scale space selection to introduce
systematic pre-smoothing of the image, 2.3 Categorisation to identify the regions present in the image
using the image’s pixel intensities. These we combine to produce our overall methodology which is
detailed in section 2.4. In section 2.5 we describe edge detection which allows us to outline and identify
the image structures in the image views we have produced. In section 3, we describe the graph matching
framework in detail. Section 4 provides details of our recall and precision analyses on a series of
trademark images and an analysis of the results produced using our processing technique is provided in
section 5. Section 6 is the conclusion.

9

2 View generation and shape identification

Sections 2.1-2.4 describe how we merge lower level shapes and texture within the image to extract
structures and produce perceptual views of the image. Section 2.5 describes a shape identification
algorithm to determine the shapes present in these views and to identify other perceptual structures
missed by the view generation step.

2.1 Scale Space representation

The first step for generating multiple perceptual views is image scaling. Scaling an image by different
amounts allows us to identify different levels of structure within the image by blurring (merging) lower
level structures and thus revealing the higher level structures, for example removing texture and
grouping shapes. Here we develop the scale-space method of Lindeberg [L98] which automatically
selects the optimum scaling factor.

The scale-space representation for a 512x512 pixel 2-D image (2ℜ∈ I) of continuous ℜ→ℜ2:f where
f (x, y) is the pixel intensity at (x, y) is ℜ→ℜ×ℜ +

2:L which is given by the solution of the diffusion eqs
1 and 2.

∑
=

∂=∇=∂
D

i
xxt LLL

ii
1

2

2
1

2
1 with () ()xx fL =0, where 2),(x ℜ∈= yx (1)

)))((),((),(xx ⋅∗⋅= ftgtL where)2/(-

2/

T
e

)2(
1),(t

Dt
tg xxx

π
= and ∗ is the convolution operation. (2)

The scale parameter +ℜ∈t corresponds to the square of the standard deviation of the kernel t=σ2. We are
interested in the significant structures’ edges in the image so we choose the normalised Laplacian which
is a “general purpose” edge-detector. We look for maxima (with respect to t) of),(2 tLt xx∇ , where L is the
scale-space representation of f, and f is the pixel intensity pattern of our image. In terms of the more
usual spread of a Gaussian, we look for maxima (with respect to σ2) of),(222 σσ xLx∇ .

To look for these maxima, Lindeberg either: selects a fixed point (e.g., the image centre), or follows the
spatial maxima through the image as they move with increasing t. To avoid the heavy processing
required by the second approach while also reducing the possibility of missing scales by using the first
approach, we choose several fixed points in the image. Therefore, we calculate candidate scales at 25
equally spread sample points xi. We also limit the permissible scales in the candidate scale set to
between 2 and 24. Allowing higher values causes the image to be too blurred to be useful for image
structure segmentation purposes.

We now have a set of candidate scales for the 25 sample points. We take the histogram of candidate
scales to identify the (single) optimal scale to use to process the image and smooth this histogram with a
3-value kernel {1, 2, 1} to remove perturbations. The {1, 2, 1} kernel assigns a higher weighting to the
central (chosen) value and a lower weighting to its two direct neighbours thus allowing us to select our
optimum scale. The scale corresponding to the first highest peak in the histogram is taken as our final
scale.

2.2 Gaussian Pyramids

10

In this stage the aim is to determine the informative image scales to identify structures in images. Scale-
space selection identifies informative scales but can be inconsistent due to the chance placement of the
25 sample points leading to under or over generalisation of the regions surrounding each sample point.
Conversely, the Gaussian Pyramid [BA83] is consistent across images but uses fixed scale values
meaning it cannot adapt to different scales and may miss structures. Therefore, we introduce the
pyramid as a pre-processor to provide consistency by pre-smoothing images to increase their similarity
prior to scale selection.

Figure 2. The multiple levels of the Gaussian pyramid where the filtered image levels
effectively form an inverted pyramid structure.

The pyramid takes an image G0(x, y) and convolves the image with a Gaussian kernel (low-pass filter) to
produce image G1(x, y). The derived image G1(x, y) is then convolved with the kernel to produce G2(x,
y) which is then processed to produce G3(x, y). For our pyramid implementation, we use 4 levels G0, G1,
G2, G3 with dimensions 512x512, 256x256, 128x128, 64x64 pixels respectively as shown in Figure 2.

If 2ℜ∈ I is the original 512x512 pixel 2-D image then the pyramid is computed as eqs 3 and 4:

G0(x, y) = I(x, y) (3)
Gi+1(x, y) = FILTER(Gi(x, y)) + RESIZE(Gi(x, y)) (4)

For the FILTER function, we use the standard Gaussian function in eq 5:

 2

2

2
, 2

1)(σ
σ πσ

e

n

n

n e
x

xf
−

∂
∂= where we set σ2 = 3. (5)

Filtering is followed by RESIZE which resizes Gi by scale factor 0.5 to give Gi+1 using separable spline
interpolation algorithm described in [U93]. We found that resizing without interpolation over-
emphasises jagged lines in images by increasing the aliasing.

The next processing step is to divide each blurred variant of the image into regions (segmentation). We
use pixel intensity categorisation to identify the structures.

2.3 Categorisation

To categorise (cluster) the pixels, we take our cue from Lu and Chung [LC98] who proposed a hill-
clustering method for determining the number of texture clusters. So, for each pyramid level Gi(x, y), the
scale (σ) is selected and the image is blurred with a Gaussian kernel of size σ giving Bi(x, y). From Bi(x,
y), we generate a histogram of pixel greyscale intensity values (divided into 255 bins). This raw

11

histogram needs smoothing using a one-dimensional Gaussian with standard deviation 10 bins (1 pixel
width) before it is usable. We then choose the N highest peaks (N categories) of the smoothed
histogram and set thresholds midway between neighbouring peaks which should reflect the larger-scale
structures. A simple example is shown in Figure 3.

Figure 3. (a) is the source image. (b) is this image’s pixel intensity histogram with the pixel
intensity threshold drawn for k=2 categories - the trough in the histogram identifies the
threshold (category boundary). (c) shows the result of categorisation.

Previous pixel categorisation work [MJ92] tends to rely upon a pre-specified maximum number of
categories Mmax. The optimum number of categories is then determined by segmenting the image into k
categories for 2 ≤ k ≤ Mmax and using some suitable criterion to select the optimum [MJ92] which is
laborious. We employ a simple heuristic which we developed following detailed analysis of the pixel
intensity peaks of 450 trademark images used in [LDH07]: sort the peaks into peak intensity order and if
the peak value is less than 100 then do not include the peak. This resets Mmax to the k peaks with values
greater than 100. This value (100) was derived through a series of analyses. It is a trade-off: too high a
value causes some images to have too few or even 0 categorisations. Too low a value causes too many
categorisations for some images. We then identify the 2 highest peaks, 3 highest peaks up to Mmax
highest peaks and divide the image into a series of views (image representations) with 2, 3 … Mmax
categories per view. The result is a series of categorised views where pixels of similar intensity are
grouped to reveal the structures within the image.

2.4 View Generation
This part of our approach differents different types of images. In particular images containing texture
from those containing no textures (just lines and block filled reagions). This is done because later
processing requires different processes applied to the two types of images. In particular, line and region
images require merging of lower level image structures (shapes) to infer the higher level structures
where as textured and noisy images require the texture or noise to be effectively blurred out to produce a
homogeneous region to represent the structure (shapes and regions) in the image.

Using the methods in 2.3 we specify Mmax as 2 for line and region–based images that are bicolour (black
and white) and Mmax as 4 for texture/noisy or grey-scale images. Note Mmax may be reset if there are
fewer than 4 peaks over 100. We have erred on the side of caution by allowing 4 categories to ensure all
views are found while potentially some unwanted views may be generated.

For the clasification process we first apply a Laplacian pyramid L0, operator, which represents the
difference of Gaussians (G0-G1) [BA83]. This is essentially an edge detection of G0 and is given in eq 6:

L0(x, y) = G0(x, y) – RESIZE(G1(x, y)) (6)

12

Using the L0 we can differentiate the types of images as textured images will have a higher energy (more
edges) compared to line/region images. To set the threshold on L0 we used visual analyses of the energy
levels of the decompositions seen by humans in 84 trademark images in a set of experiments [HEA06,
HHEA06], the decompositions seen by humans in 63 trademark images in a set of experiments [REB00]
and a further set of 450 images comprising clean, noisy and textured images [LDH07].

Over-all we use the following processing steps for the two types of images:

First, calculate the energy of L0 as in eq. 7.

Energy = ∑
∀ yx

yx,p
,

2)(where p(x, y) is the greyscale value of pixel (x, y) in L0. (7)

Then apply the following decision rules:
If energy < 9600 then process the image as a region-based/line-based.
If energy ≥ 9600 then process the image as a textured/noisy image.

Following identification of the two types of images we then apply two different processes:

2.4.1 For region/line-based images
• G0 – unprocessed.
• G2 – straight categorisation of G2 image – no scale selection.
• G3 – select scale (kernel width), convolve Gaussian (σ) with G3 image, categorise resulting

convolved image.

2.4.2 For texture/noisy images
There is a tendency for σ0==σ2 in textured/noisy images where σ0 is the scale selected for G0 and σ2 is
the scale selected for G2. During our analyses, we found that G0 and G2 were the best levels of the
Gaussian pyramid to process for textured images. However, if σ0==σ2 this would produce virtually
identical outputs when G0 and G2 were convolved with equivalent kernels and is not desirable.
Accordingly, we test for equivalence and alter our processing strategy accordingly.

• If (σ0 <> σ2) then

o G0 – select scale (kernel width), convolve Gaussian (σ0) with G0 image, categorise resulting
convolved image.

o G2 – select scale (kernel width), convolve Gaussian (σ2) with G2 image, categorise resulting
convolved image.

• If (σ0 == σ2) then

o G0 – select scale (kernel width), convolve Gaussian (σ0) with G0 image, categorise resulting
convolved image.

o G3 – straight categorisation of G3 – no scale selection.

13

2.5 Results for view generation

We present some results of our view generation processing pipeline to demonstrate that the desired
structures are being found and that texture and noise are effectively merged to form definitive shapes.
Figure 4 shows that higher-level structure (a ring shape) is extracted using blurring and categorisation.
In Figure 5, we show the result of blurring and categorising a textured and noisy image to demonstrate
that the texture is clustered and the higher-level structure of the image is revealed.

Figure 4. Three images (a, b and c) and their respective outputs. All images were classified
as line/region by the energy-based classifier.

In Figure 4, the views produced from each image are similar when compared visually by a human
observer on a column basis. The ring–structure has been found. If the three images in Figure 4, column 3
were matched the ring structures would be similar. If the three original images in column 1 were
matched they would not be similar.

Our results are not perfect. For example, in Figure 5, results (b) and (c) are good. View (d) is probably
superfluous here but the energy level and pixel intensity minimum have to be set globally so this may
result in an occasional superfluous output for some images. The edges shown in (f,) (g) and (h)
demonstrate that we have found the image structures to allow image matching. Although there is a tiny
amount of noise remaining, it comprises very small blobs which could easily be removed using a
suitable image processing technique. In contrast, image (e) shows the (1000+) edges detected in the
original image and no discernible structures.

14

Figure 5. The original image (a) is processed to produce a series of image views (b, c and d).
The edges found are shown in e, f, g, and h

2.6 Shape Identification

In sections 2.1-2.5, we have produced various views of an image with the aim of merging lower level
shapes and texture to pinpoint perceptual structures. Next we identify shapes in this data. Our image
structure-finding approach uses a closed shape identification algorithm. The method adapts and refines
Saund’s closed shape identification algorithm [S03]. By doing this, the approach can find higher level
(perceptual) shapes.

Initially, the closed shape algorithm requires an underlying technique to identify the edge segments
within an image and to detect the relationships between those edge segments. We resize the multiple
views generated to 2048x2048 pixels from 512x512 to ensure edge separation as all structures will be at
least 4 pixels wide and the structure’s edges will not be adjacent. If the edges are in adjacent pixels then
tracing the shapes is difficult as it is not clear which edge a pixel belongs to. We resize with no
interpolation to prevent blurring of the edges in the view as blurred edges will confuse the edge detector.
We find the edges in the image using a simple Laplacian edge detector before subdividing these edges
into constant curvature segments (CCSs) using the Wuescher & Boyer [WB91] curve segmentation
algorithm. This aggregates edge primitives into more perceptually-oriented CCSs. We have refined and
improved the technique by increasing the tidying of the edges prior to edge segmentation to ensure there
are no gaps or errors in the edges and tailoring the parameter settings for trademark images to improve
the quality of the CCSs produced. We set the scale parameter to 2.4 following extensive evaluation of
the CCSs generated for the images used in [HEA06, HHEA06] at different scale parameter settings. If
the image view resolves to 600 CCSs or more then we do not process the image view. This is
effectively a safeguard as processing high numbers of CCSs is very slow and image views that contain
600 CCSs or more generally contain textured regions that have not been blurred sufficiently.

15

If there are fewer than 600 CCSs then the CCSs are used in two ways. First, they are used in the lower
level graph representation in our image matching phase described in section 3 where the CCSs form the
nodes in the graph and the relationships between the CCSs form the arcs in the graph.

Secondly, the CCSs are also the building blocks for our closed shape identifier as illustrated in Figure 6.
Our aim is to group these CCSs using Gestalt-like methods to produce a graph of CCS relations which
will underpin the closed shape identification algorithm. Each CCS becomes a node in the graph. Each
CCS has two labelled end points (first point - denoted as an x, y coordinate and last point - also denoted
as an x, y coordinate). In the following: end denotes an end point (either first or last), first denotes the
end point (x, y coordinate) labelled first in a particular CCS and last denotes the end point labelled last.
We find all CCSs that are end-point proximal. We extract endpoint proximity by comparing the distance
between end points of CCSs, that is the distances between all points in the set of all {first and last}. We
have evaluated various distances (in pixels) to use for end-point proximity calculations and found the
following performed optimally with respect to finding perceptual shapes and structures. We favour
collinear proximity. Two collinear CCSs are proximal if they have a large gap but we reduce this gap if
they are not collinear. Humans favour larger gaps in collinear lines [KS91].

Figure 6. A set of CCSs (0-6). The arrow heads denote the first end of the line segment and
the opposite end of the line segment is hence the last end.

Our closed shape algorithm overlays this graph. The search commences from each end (first and last) of
each node (CCS). For each end (first then last) in turn, all possible paths are followed. This effectively
forms a search tree with paths through the tree representing the possible shapes present in the image, see
Figure 6.

Figure 7. The search tree for the set of CCSs in Figure 6. The left tree shows the tree after
expanding each end of node 0 (root). The middle tree shows how, when the tree is expanded
by node 2, a closed path is found - 0126. When 2 is expanded, although 6 is end-point
proximal it is not added as it is already present on the opposite side of the tree. The right
tree shows the tree expanded by node 4 and node 3. A second closed path is identified -
012345.

The search is managed through the use of scores for ranking possible paths through junctions such as t-
junction or crossroads, see table 1. We have revised the junction scores used by Saund to improve the
quality of the results for figurative images and to make the algorithm more consistent. We used the
results from our previous work involving human experiments [HEA06, HHEA06] to derive our new

16

junction scores. During path search and scoring, we separate straight paths from turning paths using the
table of scores depending on whether the path is: turning clockwise (CW) or anticlockwise (ACW); OR
straight clockwise or anticlockwise. Each path accumulates a score using the score from each junction it
passes through. Our path scores are an average of the junction scores. Saund’s uses a cumulative
(product) calculation but this favours short paths whereas we allow longer paths to be explored. We
have a minimum score threshold (ScoreForStraightPaths = 0.6 and ScoreForTurningPaths = 0.8),
compared to 0.6 and 0.9 respectively for Saund. As soon as the average score for a path falls below the
minimum score, we terminate the search on that path. These minimum scores were derived from a series
of analyses using the images from [LDH07]. Terminating the search as soon as the average score falls
below the threshold value allows us to speed the graph search by reducing the graph search space and
prevents poor quality paths being followed.

Junction Turning ACW Turning CW Straight ACW Straight CW
dist(CCS1,CCS2)
< 2 pixels

1.0 1.0 1.0 1.0

1.0 0.7 1.0 0.7

0.7 1.0 0.7 1.0

1.0 0.5 0.9 0.5

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 1.0 0.5 0.9

1.0 0.5 0.9 0.5

0.5 1.0 0.5 0.9

1.0 0.5 0.6 0.5

1.0 1.0 1.0 1.0

0.5 1.0 0.5 0.6

 1.0 1.0 1.0 1.0

Table 1. A table of the shape finding junction scores. Each row represents a junction
configuration such as t-junction or crossroads. The arrow indicates the path direction
through the junction. The bold scores differ from Saund’s scores.

As each leaf node in the tree is expanded, new child nodes are compared with child nodes in the
opposite side of the tree. If they are end-point proximal then a closed path (a shape) has been identified
and its nodes and boundary pixels are added to the list of candidate paths.

There are potentially multiple iterations of the shape finding process to ensure that not too many shapes
are output. On each iteration the the gap jumping parameters are reduced allong with the shape finding
parameter settings on each sub-iteration, as follows:

17

• Iteration 1: on the first iteration, we set the permissible gaps at 32 pixels and 256 pixels. If
dist(CCS1_end,CCS2_end) < 32 pixels then CCS1_end and CCS2_end are end-point proximal. If
dist(CCS1_end,CCS2_end) < 256 and the difference between the gradients of the lines (or the
terminal gradients of curves) is within ±5° then CCS1_end and CCS2_end are end-point proximal
(and continuous). This effectively joins the graph by linking the proximal end-points and mimics
human perception by allowing a wider gap between continuous pairs than non-continuous pairs
of CCSs. Also, we differentiate CCS ends (first, last) and only allow one end-point proximity
between CCS1_last and an end-point of CCS2 and one end-point proximity between CCS1_first and
an end-point of CCS2 to prevent cycles and vice versa. We always use the closest so if
dist(CCS1_last, CCS2_first)=10, dist(CCS1_last, CCS2_last)=11, dist(CCS1_first, CCS2_first)=11,
dist(CCS1_first, CCS2_last)=12 then the proximity is CCS1_last→CCS2_first and CCS1_first→CCS2_last
even though dist(CCS1_last, CCS2_last) < 32 and dist(CCS1_first, CCS2_first) < 32.

o If there are fewer than 200 shapes found after shape finding {CandidateShapeSety} for
imageViewy then we run the similarity pruning step described later in section 2.6.1.

 If there are fewer than 100 shapes after similarity pruning then the shapes are
output {ShapeSety} and processing terminates.

o If there are over 200 shapes found by the shape finding before pruning or more than 100
shapes following pruning then we revise the parameter settings upwards and rerun the
shape finder (ScoreForStraightPaths += 0.1 and ScoreForTurningPaths += 0.1),. We
continue revising the parameter settings upward until either fewer than 200 shapes are
found or the parameter setting reach their maximum permitted values
(MAX_ScoreForStraightPaths = 0.8 and MAX_ScoreForTurningPaths = 1.0). This MAX
score guides the iterations.

 If parameters have reached their maxima then run iteration 2.
o If there are fewer than 200 shapes found after revising the parameters for shape finding to

produce {CandidateShapeSety} for imageViewy then we run the similarity pruning step
described later in section 2.6.1.

 If there are fewer than 100 shapes after similarity pruning then the shapes are
output {ShapeSety} and processing terminates.

 If there are 100 shapes or more then run iteration 2.
• Iteration 2: we decrease the gaps permitted between the CCSs. A high number of shapes are

undesirable for image matching as it increases the data size and the search space for comparing
images on a shape matching basis and thus causes the matching algorithms to run too slowly. By
decreasing the gaps, the shape finder does not find the perceptual shapes but becomes a shape
tracer that finds the basic shapes present in the image. There will generally be fewer basic shapes
than perceptual shapes so the search space will be decreased. The new gaps are 8 pixels for
continuous and proximal CCSs and 4 pixels for proximal but not continuous CCSs and
{CandidateShapeSety} are produced.

o If there are fewer than 200 shapes found after shape finding {CandidateShapeSety} for
imageViewy then we run the similarity pruning step described later in section 2.6.1.

 If there are fewer than 100 shapes after similarity pruning then the shapes are
output {ShapeSety} and processing terminates.

o If there are over 200 shapes found by the shape finding before pruning or more than 100
shapes following pruning then we revise the parameter settings upwards and rerun the
shape finder (ScoreForStraightPaths += 0.1 and ScoreForTurningPaths += 0.1),. We
continue revising the parameter settings upward until either fewer than 200 shapes are
found or the parameter setting reach their maximum permitted values
(MAX_ScoreForStraightPaths = 0.8 and MAX_ScoreForTurningPaths = 1.0).

18

o If there are fewer than 200 shapes found after revising the parameters for shape finding to
produce {CandidateShapeSety} for imageViewy then we run the similarity pruning step
described later in section 2.6.1.

 If there are fewer than 100 shapes after similarity pruning then the shapes are
output {ShapeSety} and processing terminates.

 If there are 100 shapes or more then no output is produced and processing
terminates.

2.6.1 Similarity Pruning
The set of candidate paths generated above forms the initial set of shapes {CandidateShapeSety} for the
image view (imageViewy). For iteration 1 with large gaps between the CCSs (32 and 256 pixels), any
shapes with an area of fewer than 2500 pixels are discarded as they are too small to be noticeable in a
2048x2048 pixel image view. For iteration 2 with small gaps between the CCSs (4 and 8 pixels), any
shapes with an area of fewer than 900 pixels are discarded as they are too small to be noticeable in a
2048x2048 pixel image view. We then run similarity pruning to produce the final set of shapes for each
image. We have identified a set of features to determine when shapes output by the closed shape
identification algorithm are very similar and hence when one shape should be subsumed by the other. If
the top, bottom, left and right coordinates of the axis-aligned bounding box are within 1 pixel, the
lengths of the perimeters of the two shapes are within 10 pixels and the area ratio for the two shapes is
over 0.95 then we keep the shape with the highest perceptual score. We use the perceptual shape
classifier developed in [HEA_CIVR07] to generate a perceptual score 0 ≤ score ≤ 1 for each shape. We
do not use the shape classifier to classify shapes here, only to score them. All shapes left after post-
processing represent the generated shape set {ShapeSety} for that image view (imageViewy). If this
produces fewer than 100 shapes then these are output. If there are more than 100 shapes then there are
no outputs for the image view as the particularly image view has not been blurred sufficiently or
contains too much noise to be processed correctly.

2.7 Results for perceptual shape finding
The following presents some results of our shape finding methods to demonstrate that they are finding
the desired shapes in the images output from the blurring and categorisation stages. In Figure 8, we
show that perceptual shapes from an image output by our processing pipeline are found using our
methods. We thus demonstrate that by using our processing pathway to blur, categorise, edge segment
and identify the shapes, perceptually relevant shapes may be extracted.

19

Figure 8. The six perceptual shapes found by the shape identifier from the trademark
image view in the top row.

In Figure 8, the shape identifier has found the set of perceptual shapes we may expect a human to
identify [HHEA06, HEA06] in the trademark image view. This set of shapes may be used for
perceptual image matching and retrieval and will form part of the input data for the graph matching
framework described next.

20

3 The Graph Matching Framework

The graph matching framework processes the query image to produce views at various perceptual levels
(see Figure 9), finds the shapes and structures in those views (see Figure 10) and measures the
similarity between the query image’s data and the data of the stored images. Finally, the system ranks
the matching stored images by their similarity and returns the results to the user. Our graph matching
framework extracts the data to represent each image in the database offline and then performs online
query processing. By constructing the database offline, we ensure maximum efficiency as the database is
only processed once during this initial database pre-processing phase. The data produced for each image
may be stored with the image in the database and then queried online. When a query image is presented
to the system during query processing, the stored data for each database image is immediately available
for matching so query processing is maximally efficient. A user may query the system to find the best
matching images by inputting a query image.

Figure 9. This phase of the image processing pipeline initially identifies the likely image type –
whether the image may be considered a line/region image or a noisy/textured image. We use the
image’s energy to differentiate the two types so images with energy of less than 9600 are treated as
line/region and images with energy equal to or greater than 9600 being treated as noisy/textured.
The two types are then processed differently. More blurring is applied to the noisy/textured images
to smooth the texture or noise and allow the image structures to be found. The original image is not
produced as an output view for textured/noisy images otherwise the edge detector which we use to
process the image views would find large numbers of edges within the texture or noise which is not
desirable. The line/region images are blurred less and the original image is output as a view.

Image

Find
 Laplacian
Energy

Level 2 Views

Level
3

Level 0

Categorise

Categorise

Blur

Level 2

Level 0
Categorise

Blur

Categorise

Blur

Views

Views

Views

Views

Energy < 9600

Energy ≥ 9600

21

Figure 10. Once the image has been converted to a number of views (representations) then
each view is processed to find the shapes present. This shape finding uses edge detect,
segment and shape find. There are two output files produced for the PROFI project: a file
listing the constant curvature segments (CCSs) and a file detailing the shapes found (see
Appendix for examples). The CCSs are edge segments – the edge detector finds the edges
in the image and splits them into constant curvature segments. The shapes are formed by
joining CCSs to form closed figures.

As stated in the introduction, we have adopted a germetric image matching and retrieval approach that
uses the CCSs and perceptual shapes/structures identified in the previous phase to form a bi-level
representation of each image, which are then represented as a graph. The graph matching method chosen
is based on approach developed by Alwis [A99].

The matyching process commences by applying our processing pipeline in Fig 9 and 10. This produces
multiple representations (multiple image outputs as shown in Figure 4 and 5). Each of these image
outputs is stored in the database as they represent the images at varying levels and allow us to perform
multi-level matching. [E00] identified this multilevel approach as a key future development of
trademark image retrieval. Biederman et al. [BSBKF99] propose that human image recognition works
on various levels. Their analyses suggest that humans decompose images into components. These
components have qualitative (‘non-accidental’) properties and relations that allow images to be matched.
The authors determine experimentally that qualitative properties have more influence on object
matching (whether two images are deemed similar) than quantitative. The authors [BSBKF99] go on to
posit a hierarchical architecture for image decomposition building up from image primitives that the
authors termed ‘geons’. Following Biederman’s proposal, there are then two levels of matching
employed in our image matching and retrieval system. For the image matching, we use the CCSs and

View Edge
Detect

Edge
Segment

CCSs

Shapes

Graph Matching Framework

Identify
Shapes

22

shapes/structures from the various image representations as our data and use evidence combination to
produce an overall score for each image. We use perceptual relationships between the CCSs as our
lower level matching and features calculated from the shapes as a higher level matching.

Figure 11. The CCSs are edge segments – the edge detector finds the edges in the image and
splits them into constant curvature segments and form the primitive level of matching in
the graph matcher. The shapes are formed by joining CCSs to form closed figures and
these are used by the graph matcher in the higher level matching.

To perform matching of the multi-level representations of the trademark images generated by our view
generation phase using the primitives (CCSs) as the data, we use a graph matching process using the
Relaxation by Elimination algorithm (RBE) in conjunction with evidence counting [A99]. We also use a
similar technique to match views at the shape level and incorporate links to the CCSs that form each
shape to percolate evidence up to the higher (shape) level from the primitive (CCS) level. RBE and the
graph matcher provide an efficient matching framework for image matching using a multi-level retrieval
mechanism [A99].

The initial stage of this process is to generate a graph from the primitives to represent an image. In
section 2.6 we detailed how image edges are segmented into CCSs. Each CCS has the following
attributes associated:

• CCS identifier
• Type - curve/line
• Length - straight-line distance between end-points in pixels
• Orientation - gradient of line (not set for curves)

• Curvature -
1

radius (not set for lines)

• Perimeter - length of arc formed by curve (not set for lines)

CCSs

Shapes

Match

Match

RBE

RBE

Score

Score

Matches

CCS Neighbourhood

Shape Neighbourhood

Primitive Level

Higher Level

23

In our shape finding algorithm, we calculated relationships between the CCSs which we use here as the
primitives. The relationships calculated between CCSs were:

• Collinearity – the CCSs have gradients (or terminal gradients for curves) that are within ±5°.
• Proximity – the end points of the CCSs are within 32 pixels or 256 pixels if the CCSs are

collinear.
• We augment this information with corners which are defined as two proximal CCSs that are not

collinear.

These relationships thus mimic the proposed Gestalt principles of proximity and continuity thus
allowing our system to mimic the Gestalt system for human image matching. We can now produce a
graph to represent each image. The CCSs are the nodes and the arcs are the three relationships,
collinear, proximity, and corner. Two nodes are joined by a collinear arc if their gradients are within
±5°. They are joined by a proximal arc if their end-points are within 32 pixels or 256 pixels if they are
collinear. They are joined by a corner arc if they are proximal but not collinear.

Our graph matching framework uses descriptions [A99] of the image in which the graph nodes represent
the primitives (CCSs of the image) and the graph arcs describe different perceptual relationships
between those CCSs.

The RBE based matching process aims to match the query graph to a large set of previously stored
graphs representing the trademark images.

The first stage of RBE generates an initial set of candidate matches by comparing nodes of the query
graph against the various nodes of the model graphs stored in the database using local features of the
CCSs (type, length, orientation, curvature and perimeter) and also links to shapes that are built using the
particular CCS. Feature vector comparison can be performed in two different ways; either in a symbolic
fashion by discretising the feature vector elements or by calculating distance measures between the
corresponding feature vector elements of the query image and the database image. Here, we discretise
the vector elements and match the feature vector values using the discretised bins.

Once an initial set of candidate matches is obtained RBE accumulates evidence from each of the nodes
connected neighbours (representing CCS’s perceptual neighbourhood) and iteratively eliminates
implausible candidate matches using upper bound probability estimations. During this process, the query
graph is compared against all of the image representation graphs in the database and each stored graph
accumulates a match score through the use of evidence counting. To minimize the search space to
maintain computational tractability, we only use evidence from each node’s perceptual neighbours
rather than counting evidence from all of the neighbours in the graph structure as performed in the
standard RBE process [TA98]. The neighbourhood comprises other CCSs connected by the three
relationships, collinear, proximity, and corner and also links through CCS→shape relations.

The support value for solution α at CCS i after iteration n is given by:

() ()βθαθαθ
β

==== ∑ Θ∈
ji

N
i

n

i

n
j

h S ,max

Where Ni is the perceptual neighbourhood for CCS i, n
jΘ is the set of remaining candidates for CCS j at

iteration n and h(θi=α, θj=β) is a binary compatibility measure between solutions θi=α and θj=β.
A solution is eliminated if its support value is below a threshold λ.

24

Eliminate if Sn(θi=α) ≤ λ

RBE is an iterative process which stops when the process obtains stability (i.e. no more implausible
candidate eliminations). The remaining candidates that have not been eliminated are then used to
calculate a final similarity score for the primitive level (CCS level) and the images are ranked; sorted by
score.

In the previous paragraph, we described our image matching mechanism using the image primitives as
the data. We perform two levels of image matching within our graph matching framework to continue
our plan of using multi-level image representations at all stages of the matching process to mimic the
multi-level matching employed by humans [E00]. The second matching level is based on closed
shapes/structures, we use feature vectors to represent each shape/structure and incorporate information
from the other shapes/structures identified within the image along with connections to the CCS used to
construct the various shapes and structures. Shapes are matched against shapes using partial matching of
feature vectors which is much less affected by the number of shapes/structures found by our shape
detection algorithm within the images than other shape matching techniques. The inability to
accommodate images with differing numbers of shapes is a drawback we observed in global image
matching methods such as deformable image templates [DP97].

We represent each closed shape/structure using the following features:

• Shape identifier
• Circularity where Circularity = 4π* Area/ Perimeter
• Convex Hull Perimeter
• Roughness where Roughness = Perimeter / Convex Hull Perimeter
• We also store the angle between each shape’s centroid and the centroid of every other shape in

the image which produces a shape angle matrix.
• Finally, we store the CCS identifiers of the CCSs that form each shape found by our shape

identification algorithm.

We calculate the similarity between a query image and the stored images by using the CCS→shape links
and the feature vectors of each shape/structure to produce an initial set of candidate matches for each
shape/structure in the query image. As before, feature vector comparison can be performed in two
different ways; either in a symbolic fashion by discretising the feature vector elements or by calculating
distance measures between the corresponding feature vector elements of the query image and the
database image. Here, we discretise the vector elements and then using matching bin counts to
accumulate support. The graph matcher also uses CCS→shape relations to accumulate support. We then
iteratively accumulate support for each matching possibility from the shape’s contextual neighbourhood
(linked shapes and CCSs) and unlikely candidates are eliminated using upper bound probability
estimations from the query node’s perceptual neighbours. This is an iterative process which is stopped
when the process obtains stability (i.e. no more elimination).

The support value for solution α at shape i after iteration n is given by:

() ()βθαθαθ
β

==== ∑ Θ∈
ji

N
i

n

i

n
j

h S ,max

Where Ni is the perceptual neighbourhood for shape i, n
jΘ is the set of remaining candidates for shape j

at iteration n and h(θi=α, θj=β) is a binary compatibility measure between solutions θi=α and θj=β.

25

A solution is eliminated if its support value is below a threshold λ.

Eliminate if Sn(θi=α) ≤ λ

The remaining candidates are then used to calculate a final similarity score for the higher (shape) level
using evidence obtained from both the feature vectors and the shape’s neighbourhood for each image.

We aim to produce a unified multi-level image retrieval system using multiple image representations
output by the view generation pipeline and multilevel representations within the actual image matching.
We require an efficient and accurate method to combine the results from the multiple levels in the graph
representation. Image retrieval results produced using different representations show that no single
representation excels but that a combination of representations would be preferable [E00]. The graph
matching framework applies a ‘results level’ approach using rankings from the two matching levels.
Alwis and Austin [AA99] posited that this approach produced better results than alternative
representations and had been widely adopted in the document retrieval field where evidence from
different document matching levels need to be combined. Alwis [A99] assigns more weight to the top
matches in the list and combines the multiple levels using reciprocals of ranks. The combined match
score is calculated as follows:

combined score = ∑i
1

ranki

Where ranki is the image’s rank calculated using the graph matching retrieval level i.
Alwis [Thesis] proposed a framework for combining similarity scores using the Dempster-Shafer
method. The Dempster-Shafer method combines similarity scores from two matching levels using the
following equation:

CSk = µ1(1

ks /S1) µ2(2
ks /S2) + (1 - µ2) µ1(1

ks /S1) + (1 - µ1) µ2(2
ks /S2)

Where CSk represents the combined similarity score (combined from two levels) for image k
 - µi is the belief from level i
 - i

ks represents the similarity score for image k at level i
 - and Si = ∑k i

ks

26

4 Evaluation
We analyse the graph matcher to investigate the recall and precision when retrieving matches for query
images.

4.1 Data
For this evaluation we use the Aktor data set. The Aktor final distribution of the ground truth was
supplied 7th April, 2007 as a zip file (device.zip) which the partners could download from the Aktor
website. This data comprises 262 query images (order.tiff) in 262 separate directories. There are 50497
(TIFF) image files in total in the data set. In each directory are a query image (order.tiff), a number of
retrieved images which were retrieved using their Vienna classification and a text file (marksList.txt).
In some directories there is cleaned version of the query image with noise removed order_cleaned.jpg.
The text file (marksList.txt) lists which images within that directory are relevant for that query image
according to human judgment and which images within that directory are not relevant for that query
according to human judgment.

For the evaluation here we selected 34 directories which were recommended as most relevant by Aktor.
These 34 directories hold 34 query images and 3164 retrieved (database) images giving 3198 images.
There are also 27 cleaned query images (order_cleaned.jpg) where noise and texture have been removed
from the original query image which results in 3225 images in total.

We blurred these 3225 images (both query, cleaned-query and database images) to produce 11501 image
views across the 34 directories. This produced blurred query views, blurred cleaned-query views and
blurred database image views as shown in Figure 2.

Figure 12. Figure showing the view generation process for one directory (of the 34 directories).
The generated views are used to form the database for that query. Not all directories have a
cleaned query so this is shown in grey shading.

Query

Cleaned
Query

Database
Image

One Directory
–

one query

Views

Views

Views

One Database

27

4.2 Evaluation Framework
Each directory contains a text file (supplied by Aktor) listing which database images from that directory
are judged relevant (in scope) for the query and which are judged irrelevant (not in scope). Thus the set
of all images in the directory may act as a database and be trained and indexed by the graph matcher.
We may then apply the query image from that directory against the stored images and rank the images
using the graph matcher scores for each image. These image ranks may be compared to the text file
listing the expected best matches (in scope images) to produce recall and precision figures for that
query. There are 34 directors in total so this will produce 34 recall and 34 precision figures.

If there is a cleaned query image available (supplied by Aktor) then we use this as our query image for
that directory (database) otherwise we use the standard query image.

Our evaluation framework is complicated by the fact that we are blurring images to produce multiple
views (as shown in figure 12) so this multi-representation has to be accommodated in the evaluation
framework. To accommodate multiple views in the query image, we apply each view to the database
and retrieve a set of matches for each query view. For each set of matches, we take the highest score for
each database image in that set of matches. For example, if there are three query views (qv1, qv2, qv3)
and database image 1 (db1) has 2 views (db1_1, db1_2) and database image 2 (db2) has 2 views (db2_1,
db2_2). We apply qv1 and return scores for all image views (db1_1=0.5, db1_2=0.6, db2_1=0.9,
db2_2=0.3). We apply qv2 and return scores for all image views (db1_1=0.9, db1_2=0.4, db2_1=0.5,
db2_2=0.6). We apply qv3 and return scores for all image views (db1_1=0.5, db1_2=0.7, db2_1=0.2,
db2_2=0.3). Thus the highest score for db1 for qv1 is 0.6, for qv2 is 0.9 and for qv3 is 0.7. The highest
score for db2 for qv1 is 0.9, for qv2 is 0.6 and for qv3 is 0.3. The cumulative total score for each
database image is then the sum of scores for that image across all sets of matches. The cumulative total
score for db1 is 0.6+0.9+0.7=2.2. The cumulative total score for db2 is 0.9+0.6+0.3=1.8. The database
images may then be ranked from 1... N by sorting them on the cumulative score.

There were some problems with the data which affected our evaluation so we note these here.

1. In directory 23300, the query image had to be hand edited by York as the supplied cleaned query
image would not produce any outputs (image views) from our blurring process. The supplied
image is shown in Figure 13 only contains a very small structure in the top left corner and this
structure is very noisy (there is a large amount of light grey noise surrounding the black regions).
We removed the noise and were able to generate an image view.

28

Figure 13. The figure shows the image representing the query image for directory 23300
on the left. The image contents are small and in the top left of the image. Due to large
amount of noise in the image, the York PROFI software was unable to generate image
views. The image was therefore, hand edited to remove the noise as shown in the right
hand image and then produced an image view.

2. In directory 23305, in marksList.txt, image R_459013… was listed as D rather than Y (in scope)

or N (out of scope). We treated this as N (out of scope).
3. In directory 23307, two of the files listed in marksList.txt were not present in the directory, one

of these images 2142503… was an in scope image and the other image was out of scope. We
treated these images as not present and reduced the number of images in the directory N from 57
to 55 and the number of in scope images n from 7 to 6.

4. In directory 23328, two of the files listed in marksList.txt were not present in the directory; both
of these images 2166262… and 2166265 were in scope images. We treated these images as not
present and reduced the number of images in the directory N from 54 to 52 and the number of in
scope images n from 4 to 2.

5. In directory 23330, only one of the files listed in marksList.txt is in scope (2373748… shown in
figure 14) and our view generation (blurring) was unable to generate any views from this image.
The image is noisy, the contents do not cover the image, the image consists mainly of text
(which is not in the scope of the PROFI project) and the lines are very jagged. We do not
provide any results in the table for this query.

29

Figure 14. The PROFI software was unable to generate any image views for this image.

6. In directory 23360, one of the files listed in marksList.txt as in scope (802357… shown in figure
15) did not produce any outputs from our view generation (blurring) process. The image is
noisy, the contents do not cover the image and the image consists mainly of text (which is not in
the scope of the PROFI project). We do not calculate a last place accuracy figure for this query
due to the missing file.

Figure 15. The original image is shown left and the greyscale PGM image created for this is shown
right. The PROFI software was unable to generate any image views for this image.

30

7. In directory 23361, one of the files listed in marksList.txt as not in scope (707688… shown in
figure 16) did not produce any outputs from our view generation (blurring) process. The image
is noisy, the image did not convert well from colour to greyscale and the image consists mainly
of text (which is not in the scope of the PROFI project).

Figure 16. The original image is shown left and the greyscale PGM image created for this is shown
right. The PROFI software was unable to generate any image views for this image.

8. In directory 23363, one of the files listed in marksList.txt as in scope (660627… shown in figure
17) did not produce any outputs from the shape finding process. The image is extremely noisy,
and the image contains text (which is not in the scope of the PROFI project). The view
generation generated views but the views contained too many shapes due to the noise in the
image.

Figure 17. The original image is shown left and one of the blurred image views created for this is
shown right. The PROFI software was unable to generate any shape outputs for this image as there are
too many shapes to process due to the noise in the image.

31

9. In directory 23402, 4 images of the files listed in marksList.txt are missing. These images were
all in scope. We treated the images as not present and reduced the number of images in the
directory N from 176 to 172 and the number of in scope images n from 44 to 40. Two of the
images did not produce any image views from the blurring process; neither of these images was
in scope. One image did not produce any shapes when the shape finder processed the image
views produced for that image. This image was not in scope.

10. In directory 25024, two of the files listed in marksList.txt (2028250A…, 2028250B…) were not
present in the directory. Both of these images were in scope. We treated the images as not
present and reduced the number of images in the directory N from 184 to 182 and the number of
in scope images n from 46 to 44.

11. In directory 25212, one of the files listed in marksList.txt as in scope (776087… shown in figure
18) did not produce any outputs from our view generation (blurring) process. The image is
noisy, the image did not convert from colour to greyscale well and the image consists mainly of
text (which is not in the scope of the PROFI project). We do not calculate a last place accuracy
figure for this query due to the missing file.

Figure 18. The original image is shown left and the greyscale PGM image created for this is shown
right. The PROFI software was unable to generate any image views for this image.

12. In directory 25246, two of the files listed in marksList.txt (2281128…, 2281231…) were not
present in the directory. Both of these images were in scope. We treated the images as not
present and reduced the number of images in the directory N from 62 to 60 and the number of in
scope images n from 12 to 10.

13. In directory 25266, one of the files listed in marksList.txt as in scope (MI011857… shown in

figure 19) did not produce any outputs from our view generation (blurring) process. The image
is noisy, the image contents do not cover the image well and the image consists mainly of text
(which is not in the scope of the PROFI project). We do not calculate a last place accuracy figure
for this query due to the missing file.

32

Figure 19. The PROFI software was unable to generate any image views for this image.

14. In directory 25301, one of the files listed in marksList.txt (815650…) was not present in the
directory. This image was in scope. We treated the image as not present and reduced the
number of images in the directory N from 240 to 239 and the number of in scope images n from
60 to 59.

15. In directory 25306, 120 of the files listed in marksList.txt were not present in the directory, 5 of
these images were in scope images and the other 115 images were not in scope images. We
treated these images as not present and reduced the number of images in the directory N from
324 to 204 and the number of in scope images n from 81 to 76.

16. In directory 25336, one of the files listed in marksList.txt as in scope (2075741… shown in

figure 20) and one of the files listed as not in scope (075077) did not produce any outputs from
the shape finding process. The images are extremely noisy and the images contain text (which is
not in the scope of the PROFI project). The view generation generated views but the views
contained too many shapes due to the noise in the image. We do not calculate a last place
accuracy figure for this query due to the missing file.

Figure 20. The original image is shown left and one of the blurred image views created for this is shown
right. The PROFI software was unable to generate any shape outputs for this image as there are too
many shapes to process due to the noise in the image.

17. In directory 25339, one of the files listed in marksList.txt as not in scope (MI002379… shown in
figure 21) did not produce any outputs from the shape finding process. The image is noisy, the
contents do not cover the image and the image consists of text (which is not in the scope of the

33

PROFI project). The view generation generated views but the views contained too many shapes
due to the noise in the image.

Figure 21. The original image is shown left and one of the blurred image views created for this is
shown right. The PROFI software was unable to generate any shape outputs for this image as there are
too many shapes to process due to the noise in the image.

18. In directory 25377, five of the files listed in marksList.txt were not present in the directory, four
of these images were in scope images 2019270…, 2031345…, 2169874…, 2178269… and the
other image was out of scope. We treated these images as not present and reduced the number of
images in the directory N from 172 to 167 and the number of in scope images n from 43 to 39.

19. In directory 25517, two of the files listed in marksList.txt were not present in the directory; both
of these images were in scope images (2378658…, 2269516…). We treated these images as not
present and reduced the number of images in the directory N from 84 to 82 and the number of in
scope images n from 21 to 19. One of the files listed in marksList.txt as in scope (783963…
shown in figure 22) did not produce any outputs from our view generation (blurring) process.
The image is noisy, the image does not convert from colour to greyscale well and the image
consists mainly of text (which is not in the scope of the PROFI project). We do not calculate a
last place accuracy figure for this query due to the missing file.

34

Figure 22. The original image is shown left and the greyscale PGM image created for this is shown
right. The PROFI software was unable to generate any image views for this image.

4.2.1 Score measures
We follow the evaluation procedure introduced by ARTISAN [EGB97] and calculate three measures

• Normalised Recall =
)(

11

nNn
iR 1

n
ii

n
i

−
∑−∑− ==

• Normalised Precision =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑−∑− ==

)!(!
!

)()(11

nNn
Nlog

i logR log 1
n
ii

n
i

Where there are a large number of files in a directory (i.e., N>170), then N! is too large and
normalised precision calculates as 1. For such query directories, we calculate the

standard precision =
lastR
n

where Rlast is the rank at which the last relevant (in scope) document last is actually retrieved.
Where we have used this figure, we highlight the score in blue in Table 2

• Last Placed Ranking =
nN
nR 1 last

−
−−

Where Ri is the rank at which document i is actually retrieved, Rlast is the rank at which the last
relevant (in scope) document last is actually retrieved, n is the total number of relevant (in scope)
documents and N is the size of the whole document collection.

For all measures a higher score is desirable: a score of 0 indicates failure to find the relevant images
and a score of 1 indicates that the relevant documents were found in the highest ranks.

Due to the problems processing the data as noted above, we have had to accommodate the problems
within the measure calculation. If files are missing from the data set then we reduce N and n
accordingly. If we are unable to process an image that is in scope, either the blurring cannot produce

35

image views or the shape finding cannot find shapes in the views produced then we rank these images as
equal last. For example, if there are 100 images in a directory and we cannot process 2 then both of
these unprocessed images are ranked 99.5 where ranks range 1...N.

As noted by [EGB97], these three calculated measures all estimate retrieval accuracy but each measure
emphasises a different characteristic of the retrieval performance. Normalised recall describes the
system performance at high ranks, normalised precision assesses performance at all ranks and the last
place measure demonstrates the system’s effectiveness at retrieving all images by assessing the rank of
the last relevant (in scope) image.

36

5 Results

The results are shown in Table 2. The recall varies between 89% for directory 23300 and 32% for
directory 23285. The images for directory 23285 are shown in appendix B and the images for directory
23300 are shown in appendix C. The recall is normalised and emphasises the accuracy of the top
retrieval matches. The precision varies between 87% and 14%. (We note that we are unable to calculate
the normalised precision for some queries due to the large numbers of images in the directories and use a
standard precision figure for these directories instead). Normalised precision assesses the accuracy
across the range of ranks. The last place varies between 0.88 and 0 and demonstrates the system’s
effectiveness at retrieving all images. The unweighted average normalised recall across the 34 queries is
55%. We feel the results are mixed.

Query ID
(Directory)

N n Recall Precision Last Place

23285 56 6 0.3233 0.1438 0.04
23300 52 2 0.8900 0.5580 0.88
23305 17 5 0.8833 0.8686 0.6667
23307 55 6 0.6565 0.5384 0.2245
23327 51 1 0.8000 0.3901 0.8
23328 52 2 0.6 0.2563 0.48
23330 N/R N/R N/R N/R N/R
23337 60 10 0.4100 0.2764 0.04
23358 76 19 0.4266 0.3228 0.1228
23360 72 18 0.5751 0.5263 N/R
23361 52 2 0.51 0.3371 0.1
23363 60 10 0.462 0.3001 N/R
23367 53 3 0.4000 0.1448 0.4
23379 62 12 0.4417 0.3454 0.08
23402 172 40 0.4763

0.2367
(n/Rlast)

N/R

23415 58 8 0.5875 0.3593 0.26
25024 182 44 0.6653

0.25
(n/Rlast)

0.0435

25207 53 3 0.5200 0.2657 0.08
25212 60 10 0.414 0.2682 N/R
25216 64 14 0.4686 0.3332 0.1
25244 92 23 0.6377 0.5351 0.1159
25246 60 10 0.48 0.3131 0.02
25260 108 27 0.5839 0.4414 0.0741
25266 172 43 0.5486

0.25
(n/Rlast)

N/R

25301 239 59 0.6600

0.2706
(n/Rlast)

0.1167

25306 204 76 0.5531

0.3725
(n/Rlast)

0

25308 92 23 0.4650 0.3428 0.0435
25311 88 22 0.4731 0.3663 0

37

25336 208 52 0.5437 0.2506
(n/Rlast)

N/R

25339 176 44 0.5425 0.2558
(n/Rlast)

0.0303

25377 167 39 0.4944 0.3523 0.0234
25493 55 5 0.4000 0.1916 0.1
25500 63 13 0.6692 0.5037 0.22
25517 82 19 0.5873 0.4014 N/R

Table 2. The table lists the number of images in the database N, the number of in scope images in
the database n, normalised recall, normalised precision and last place count for 34 queries each
applied to its own database from the 34 databases present within the Aktor data set evaluated.
N/R indicates no result. Text in red indicates where there were problems with the data set or
problems processing the data set. Where the precision is listed in blue text, we have used the
standard precision calculation rather than the normalised as the number of files in the directory
was too large to use the normalised version.

Many of the images in the data set provided are difficult to process. Many are extremely noisy, many
contain large areas of text which is not in the scope of the PROFI project, many images are coloured
TIFFs and do not convert to greyscale well and some images have the image structures compressed in a
small area of the image with much background. Unfortunately, this background is often noisy so up-
scaling the image structure to cover the image is not possible. We have written software filters that can
remove some salt and pepper noise but they need to be initiated by human inspection and inspecting
3500 images to determine where to run the filters is not feasible. Automating the filters is not feasible as
many images contain texture which is adversely affected by running a filter over it and is very difficult
to distinguish noise from texture automatically. From the directory 25339, the following 8 images
provide a cross-section of the images within that directory to illustrate our points. It is not even clear
from human inspection whether some of these images are noisy or textured. Image 2 is probably
textured whereas image 5 is probably noisy. We achieved a normalised recall accuracy of 54% and a
standard precision score of 26% for this query despite the image quality.

1 2

38

3 4

5 6

39

7 8

Unfortunately, such images have an impact on the recall and precision figures as they are very difficult
to process accurately. This manifests itself in the wide range of recall and precision figures in table 2.

We also feel that improvements need to be made to the graph matching framework. The original
framework was developed by Alwis [A99] as a PhD thesis and was biased towards matching the images
using edge segments and Alwis spent much tuning the framework to maximise recall accuracy with
respect to edge segments. However, in the PROFI project, the partners have focussed on shapes more
than edge segments in accordance with both the Project proposal and producing data that is useful to
ALL partners. Also Alwis’s original graph matching framework did not use image views to form the
data. There was only a single representation of each image. The use of multiple representations
introduces the problem of collating the results for each image across multiple views. We input each
image view as a query and produce a set of rankings and scores for all database images against each
view in turn. There are many ways to collate multiple results such as majority voting, weighted majority
voting, best score etc. Hence, this change of emphasis away from edge segments to shapes and the
introduction of image views is clearly impacting on the accuracy. Revising the framework fully would
necessitate spending much time re-optimising the graph matching framework to rebalance the
framework and rectify the bias from edge segments to shapes. We would also need to spend much time
assessing the merits of the various measures for collating scores.

40

6 Conclusion

We have developed and demonstrated an image matching framework based on graph matching. The first
stage is a figurative image processing pathway comprising a suite of methods to find perceptual shapes
(structures) within images. Each image produces a number of views and each view produces a set of
edge segments and a number of perceptual shapes. The sets of images segments and the sets of shapes
found for each view may be matched using any suitable image matching framework.

In this work we perform image matching using a graph matching framework designed and implemented
to identify similar images using components. Inside the graph, each graph node represents either an edge
segment (image primitive) or shape/structure (perceptual object) and the graph edges represent the
topological and directional relations between the node objects. The matching framework uses the Binary
version of the continuous Bayesian Relaxation by Elimination framework ([TA98]). This framework
comprises two main stages: making initial hypotheses about possible matches; and, improving initial
hypotheses using contextual information.

The graph-matching framework has been used in conjunction with the outputs from the processing
pipeline to produce an image matching system. The images matching system has been used to match
query images against stored database images using data supplied to the project by Aktor.

[ESV07] stated that a trademark retrieval system should satisfy the following criteria:

• “One should take into account every possible interpretation of a trademark image.”
• “It should be possible to search in big sets of images with an acceptable speed (relatively short

delivery times).”
• “Very similar (to the query image) images in the database can not be missed (zero tolerance).”
• “Trademark images should be compared in great detail (such as shape, contour, and structure)

taking into account all sorts of transformations (such as rotation, scaling, inversion, and
blurring).”

[ESV07] also stated that the system should produce “image interpretations”. They note that a trademark
retrieval system should be able to identify image components such as shapes, regions, texture, colour
and text components and should couple this with human-perception-based segmentation to find more
implicit shapes and structures in the image. Both [E00] and [BSBKF99] posit that human image
matching operates on multiple levels. We have replicated these suggestions in our system, both in terms
of the image representation where we use blurring and categorisation to produce multiple views of
images to allow perceptual shapes and structures to be identified at different levels, and in terms of
image matching, where the images are matched using both primitives (CCSs) and higher level
perceptual shapes/structures. The evidence from both levels (CCSs + shapes/structures) is combined
during matching to produce the overall match score between two images.

The retrieval results have been mixed. This may be explained in part by problems with the data with
many noisy images, images that did not convert from colour to greyscale well and many images that
contained large areas of text. However, we feel there are still many improvements that could be made to
the graph matching framework. The original framework was geared towards matching the edge
segments and much time has been spent tuning the framework to maximise recall accuracy. However,
in PROFI we have focussed on shapes more than edge segments in accordance with the Project
proposal. Hence, this change of emphasis is impacting on the accuracy and would necessitate spending
much time re-optimising the graph matching framework to rebalance the framework and rectify the bias

41

from edge segments to shapes. We have also introduced multiple representations for each image which
have to be accommodated into the matching process and would benefit from further evaluation.

42

References

[A95] J. Ashley, et al, Automatic and Semiautomatic Methods for Image Annotation and Retrieval in

QBIC, Proc Storage and Retrieval for Image and Video Databases Conf, 1995.
[A99] S. Alwis. Content-Based Retrieval of Trademark Images, PhD Thesis, Dept. of Computer

Science, University of York, UK, 1999
[AA99] S. Alwis, and J. Austin. Trademark image retrieval using multiple features. Presented at CIR-

99: The Challenge of Image Retrieval, Newcastle-upon-Tyne, U.K., Feb. 1999.
[BA83] P.J. Burt & E.H. Adelson. The Laplacian Pyramid as a compact image code, IEEE Trans on

Communications, 31(4):532-540, 1983.
[BSBFK99] I Biederman, et al. Subordinate-Level Object Classification Re-examined. Psychological

Research, 62:131-153, 1999.
[CS99] G. Ciocca and R. Schettini. Similarity Retrieval of Trademark Images. In Proc. of the Intl. Conf.

on Image Analysis and Processing, pp. 915-920, 1999.
[DP97] A. Del Bimbo and P. Pala. Visual Image Retrieval by Elastic Matching of User Sketches. IEEE

Trans. Pattern Anal. Mach. Intell. (PAMI), 19(2):121-132, 1997.
[E00] J.P. Eakins, Trademark image retrieval - a survey, Multimedia Storage and Retrieval Techniques -

State of the Art (Berlin: Springer-Verlag, 2000).
[EGB97] J.P. Eakins, M.E. Graham and J.M. Boardman. Evaluation of a trade-mark retrieval system. in

19th BCS IRSG Research Colloquium on Information Retrieval, Robert Gordon University,
Aberdeen, 1997.

 [ERE03] J. P. Eakins, K. J. Riley, J. D. Edwards, Shape Feature Matching for Trademark Image
Retrieval. In: E.M. Bakker et al. (Eds.): CIVR 2003, LNCS 2728, pp. 28-38, Springer-Verlag,
2003.

[ESB96] J. P. Eakins, K. Shields and J. Boardman. ARTISAN – a shape retrieval system based on
boundary family indexing. In Proc. SPIE: Storage and Retrieval for Still Image and Video
Databases, Vol. 2670, pp. 17-28, 1996.

[ESV07] J.P. Eakins, J. Schietse, R.C. Veltkamp. Practice and Challenges in Trademark Image
Retrieval. Procs 6th ACM International Conference on Image and Video Retrieval, CIVR'07, 9-
11 July 2007.

[F03] J. French, et al, An Exogenous Approach for Adding Multiple Image Representations to Content-
Based Image Retrieval Systems, Proc 7th Int’l Symposium on Signal Processing and its
Applications, Paris, 2003.

[G72] E. Goldmeier. Similarity in Visually Perceived Forms, Psychological Issues, 8(1), 1972.
[HEA06] V.J. Hodge, J. Eakins & J. Austin. Eliciting Perceptual Ground Truth for Image

Segmentation. Technical Report YCS 401(2006), Department of Computer Science, University
of York.

[HEA07] V.J. Hodge, J. Eakins & J. Austin, Inducing a Perceptual Relevance Shape Classifier, Proc 6th
ACM Int’l Conf. on Image and Video Retrieval, (CIVR07), Amsterdam, 2007.

[HHEA06] V.J. Hodge, G. Hollier , J. Eakins & J. Austin, Eliciting Perceptual Ground Truth for Image
Segmentation, Proc Int’l Conf on Image and Video Retrieval (CIVR06), Tempe, AZ, 2006.

[JV98] A. K. Jain and A. Vailaya. Shape-Based Retrieval: A Case Study with Trademark Image
Databases. Pattern Recognition, 31(9):1369-1390, 1998.

[KK98] Y.S. Kim & W.Y. Kim. Content-based trademark retrieval system using a visually salient
feature. Image and Vision Computing, 16:931-939, 1998.

[KS91] P.J. Kellman and T.F. Shipley, A theory of visual interpolation in object perception, Cognitive
Psychology 23 (1991), pp. 141–221.

43

[L98] T. Lindeberg, Feature Detection with Automatic Scale Selection, Int’l Journal of Computer
Vision, 30(2), 1998.

[LC98] C-S. Lu & P-C. Chung, Wold Features for Unsupervised Texture Segmentation, Proc 14th Int’l
Conf on Pattern Recognition (ICPR'98), 1998.

[LDH07] R. van Leuken, F. Demirci, V.J. Hodge et al, Layout Indexing of Trademark Images, Proc
ACM Int’l Conf. on Image and Video Retrieval (CIVR07), Amsterdam, 2007.

[MJ92] J. Mao & A.K. Jain, Texture classification and segmentation using multiresolution simultaneous
autoregressive models, Pattern Recognition, 25:173-188, 1992.

[MRC98] R. Manmatha, S. Ravela, and Y. Chitti. On computing local and global similarity in images.
In Proc. SPIE Conf. on Human and Electronic Imaging III, 1998

[REB00] M. Ren, J.P. Eakins & P. Briggs, Human perception of trademark images: implications for
retrieval system design, Journal of Electronic Imaging, 9(4):564-575, 2000.

[S03] E. Saund, Finding Perceptually Closed Paths in Sketches and Drawings, IEEE Trans. Pattern
Analysis and Machine Intelligence, 25(4):475-491, 2003.

[TA98] M Turner, J Austin. Graph matching by neural relaxation. Neural Computing & Applications
7(3): 238-248, Springer, 1998.

[U93] M. Unser, A. Aldroubi & M. Eden, B-Spline Signal Processing, IEEE Trans on Signal
Processing, 41(2) 1993, 821-833 (part I) & 834-848 (part II).

[WB91] D.M. Wuescher & K.L. Boyer, Robust contour decomposition using a constant curvature
criterion, IEEE Trans. Pattern Analysis and Machine Intelligence, 13(1):41-51, 1991.

44

Appendix A
7 File Formats in use by the Trademark Matcher

7.1 Database Files

The York PROFI software outputs the blurred image views in PGM format. These are converted to BMP format using the
ImageMagick convert utility. The York processing pipeline produces two files per image view for the graph matcher: a local
file which contains details of the CCSs and their relationships and a global file which contains details of the shapes, their
relationships and the relationships between eh shapes and the CCSs (i.e., which CCSs are used to construct each shape).

* imageX_local_raw – one file per image view in the database
* image_global_raw – one file per image view in the database

The query application also creates local and global raw feature files for the query image views.

The database of image view files (BMP files) are indexed within the graph matcher software and each is given and image ID.

7.1.1 imageX_local_raw
This file contains details of the CCSs for an image view. One file is created for each image view in the database. One file is
also constructed for each of the query image views. The first line is the image ID.

Image_ID <=ID
type angle ratio seg_id seg_id <=corners
9999 9999 9999 9999 9999
seg_id type length orientation curvature perimeter <=segments
9999 c 9999 9999 9999 9999
seg_id [neighbour_N]+ # <=proximity
$$$$
seg_id [neighbourN]+ # <=collinearity
$$$$

An example being . . .

182 <= ID
1 2.132353 1.374878 1 14 <= corners
1 3.866667 1.236727 3 4
2 156.388657 1.585456 5 4
1 3.866667 1.236727 3 4
2 103.555023 1.199970 6 5
2 156.388657 1.585456 5 4
2 45.153702 3.363724 6 7
2 109.807549 1.199970 6 5
2 45.153702 3.363724 6 7
2 67.821167 1.095631 10 9
2 72.515587 1.095631 10 9
1 3.761905 1.295176 12 13
1 1.079365 1.562608 14 13
1 3.761905 1.295176 12 13
1 1.079365 1.562608 14 13
0 9.819305 1.042198 15 19
9999 9999 9999 9999 9999
1 c 53.823788 0.000000 145 55.426418 <= segments
2 l 5.656854 45.000011 999999 0.000000
3 c 62.177166 0.000000 116 65.598007
4 c 45.276924 0.000000 30 53.041634
5 l 84.095184 154.653824 999999 0.000000

45

6 c 91.235954 0.000000 373 100.911720
7 l 30.000000 89.999977 999999 0.000000
8 l 11.401754 127.874977 999999 0.000000
9 l 61.098282 21.104841 999999 0.000000
10 c 62.241467 0.000000 326 66.941147
11 l 10.630146 48.814083 999999 0.000000
12 c 34.014702 0.000000 237 33.414215
13 c 25.806976 0.000000 63 25.798986
14 c 38.052597 0.000000 68 40.313713
15 l 24.596748 116.565041 999999 0.000000
16 l 24.596748 116.565041 999999 0.000000
17 c 24.207438 0.000000 161 23.798986
18 c 5.000000 0.000000 39 3.828427
19 l 23.600847 126.384346 999999 0.000000
20 l 8.000000 -0.000000 4 0.000000
21 l 5.385165 158.198578 2 0.000000
22 l 9.433981 147.994614 999999 0.000000
23 l 4.123106 165.963760 2 0.000000
24 l 6.403124 38.659817 2 0.000000
9999 c 9999 9999 9999 9999
1 2 14 # <= proximity
2 3 20 1 #
3 4 2 20 #
4 5 3 #
5 6 4 #
6 7 5 #
7 8 6 #
8 9 7 #
9 10 8 #
10 11 9 #
11 12 10 #
12 13 11 #
13 14 12 #
14 1 13 #
15 18 19 #
17 18 #
18 15 19 17 #
19 20 15 18 #
20 19 2 3 #
21 22 #
22 21 #
$$$$
1 17 # <= collinearity
15 19 #
17 1 #
19 15 #
21 22 #
22 21 #
$$$$

7.1.2 imageX_global_raw
One file is built for each image view in the database and contains the details of the shapes, their relationships and the
relationships between the CCS and the shapes (which CCSs are used to construct each shape). One file is also constructed for
each query image view.

Image_ID
hull_circumference (unused)
Figure_ID circumference hull_circumference directionality [seg_id]+ # <=Shape feature vector
$$$$
Figure [rel_angle]+ # <=Shape relations

46

an example being . .

172
0.000000
1 0.558252 1288084.125000 0.248115 1 7 6 5 4 3 2 # <=Shape feature vector
2 0.268201 918413.000000 0.254552 8 23 22 21 20 19 18 17 14 13 12 11 10 9 #
3 0.236382 897464.875000 0.041051 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 #
4 0.416408 399667.062500 0.085376 24 33 32 31 30 29 28 27 26 25 #
$$$$
1 0.000000 8.688454 8.545727 17.926044 # <=Shape relations
2 8.688454 0.000000 0.142727 26.614498 #
3 8.545727 0.142727 0.000000 26.471771 #
4 17.926044 26.614498 26.471771 0.000000 #

47

Appendix B
8 The unprocessed images for Query 23285. (Query with lowest

normalised recall)
Prior to view generation, each image is padded with white space to make it square and resized to 512x512 pixels.

Query Image

In scope Database Images (6) – ordered by rank and ranked 26, 32, 35, 43, 44, 54
respectively

48

Out of scope Database Images (50) (not ordered)

49

50

51

52

53

54

55

Appendix C
9 The unprocessed images for Query 23300. (Query with highest

normalised recall)
Prior to view generation, each image is padded with white space to make it square and resized to 512x512 pixels.

Query Image

In Scope Database Images (2) - ordered by rank and ranked 6 and 8 respectively

56

Out of Scope Database Images (50) (not ordered)

57

58

59

60

