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Abstract

We present a generic probabilistic algorithm based on random sampling for match-
ing shapes which are modelled by sets of curves. The algorithm can be applied to
translations, rigid motions, and similarity maps as possible sets of transformations.
We analyze which similarity measure is optimized by the algorithm and the number
of samples necessary to get a prespecified approximation to the optimal match within
a prespecified probability.

1 Introduction

Our research is motivated by the task of automated retrieval of figurative images in large
databases, where the evaluation of the similarity of two images is based on their geometric
shape and not color or texture. Matching two geometric shapes under transformations
and evaluating their similarity is one of the central problems in such retrieval systems,
but it is also a problem of independent interest which is widely covered in literature,
see [4, 16, 23, 14] for surveys.

We assume that the shapes are modeled by sets of plane curves. As possible classes of
transformations we will consider translations, rigid motions (rotation and translation) and
similarities (rotation, scaling and translation). Our objective is to develop an algorithm
which comes close to human similarity perception and allows an efficient implementation
for the retrieval system.

Several similarity measures and algorithms are known to match two curves, especially
polygonal curves. One of the “universal” similarity measures is the Hausdorff distance
which is defined for any two compact sets A and B. Alt et al. describe in [2, 4] efficient
algorithms for computing the Hausdorff distance and minimizing it under translations and
rigid motions for arbitrary sets of line segments. One of the drawbacks of the Hausdorff
distance is that it is very sensitive to noise. A few similarity measures are defined for pairs
of curves, which capture the relative course of two curves: Fréchet distance [4], turning
function distance [6], and dynamic time warping distance [11]. There are no generalizations
of those distances to sets of curves, although in [5] a generalization of the Fréchet distance
to geometric graphs is given, and in [21] Tanase et al. describe an algorithm for matching
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a set of polygonal curves to a single polygon. A similarity measure which is designed for
sets of curves is the reflection visibility distance [13]. The reflection visibility distance
is robust against different kinds of disturbances but is expensive to compute. Some of
these similarity measures can be modified to valuate partial match, e.g., percentile-based
Hausdorff distance [14].

The method we introduce is close to an intuitive notion of “matching”, i.e., find one
or more candidates for the best transformations, that when applied to the shape B map
the most similar parts of the two shapes to each other. The major idea is to take random
samples of points from both shapes and give a “vote” for that transformation (translation,
rigid motion, or similarity) matching one sample with the other. If that experiment is
repeated frequently, we obtain by the votes a certain probability distribution in the space
of transformations. Maxima of this distribution indicate which transformations give the
best match between the two figures.

The matching step of our algorithm is, therefore, a voting scheme. Voting based meth-
ods are widespread in model based pattern recognition. Related approaches include geo-
metric hashing [24], alignment methods [15], and the generalized Hough transform, also
called pose clustering [1, 18, 19, 20] and generalized Radon transform [12, 22].

Generalized Hough transform (and Radon transform) is an approach closely related
to our algorithm. The general setting is: given a model and an image, the goal is to
determine whether the image contains a possibly transformed occurrence of the model.
The set of possible transformations is considered as a cluster space according to a suitable
parametrization. For each minimum size set of (feature-)points in the image and in the
model, that is, sets of points of such size that a transformation mapping one set to the other
is uniquely determined, an “evidence” for the transformations mapping model features to
the image features is gathered in the cluster space. The size of the feature set depends
on the allowed transformation class. When all image features have been considered, each
element of the usually discretized cluster space contains a measure of consistency of the
transformation.

Most of the work done in this area, though, considers image feature space and sometimes
also the model feature space to be discrete, which is natural in the field of computer vision.
In our case, the two shapes we want to match are continuous sets of points corresponding
to the planar curves. Therefore, the pure enumeration of image features and gathering of
evidences for every feature is not applicable. Instead, we perform a randomized approxima-
tion of the evidence distribution in the transformation space. Another feature common to
most pose clustering methods is the discretization of the transformation space. The usual
clustering techniques used together with pose clustering are binning and multidimensional
histogramming. In contrast to those methods we do not consider a discrete set of features
that describe shapes, but work with continuous curves. Our method is independent of the
choice of parameterization and discretization grid in transformation space.

The main contribution of this work is the theoretical analysis of the probability distri-
bution induced in transformation space. We give rigorous bounds on the runtime (number
of experiments) necessary to obtain the optimal match within a certain approximation
factor with a prespecified probability.
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2 Probabilistic matching

We assume that shapes are modelled by sets of curves, and that for each curve a random
point under uniform distribution can be generated in constant time. This is the case
for line segments, which would be the most common representation in practice, but also
for curves for which a natural parameterization is explicitly given. Given two shapes
A, B ⊂ R2, a class of allowed transformations T and a certain parameter δ, we want to
find a transformation t ∈ T which lets the transformed image of B, t(B), match best
A within a tolerance of δ. Distances in image space are measured with respect to some
standard metric Lp, e.g., Euclidean metric (L2) or maximum distance (L∞).

The definition of what exactly a good match means is given in section 3 for the general
case and in more details for different transformation classes in section 4. Here we follow
an intuitive notion of a “good match”: two shapes are similar if they can be mapped to
each other in such a way that large parts of them are close, this position is then a good
match. So we are searching for a transformation that maps the most similar parts of the
shapes A and B to each other.

Selecting a random point under uniform distribution from a set of curves can be reduced
to selecting a random number under uniform distribution on an interval of real numbers:
Select a random curve from the set, where the probability for a curve is weighted with
the relative curve length. Then, consider the parameterization by length of the curve and
select uniformly a random parameter value from the parameter interval, take the point
corresponding to the selected parameter value.

The idea of the probabilistic approach is quite simple. We first describe an algorithm
for matching under translations:

1. Take a random point a from the shape A and a random point b from B and give one
“vote” to the translation t which maps b to a, that is t = a− b.

2. Repeat this experiment many times. Then the distribution of votes in the two-
dimensional translation space T approximates a certain probability distribution.

3. For a prespecified neighborhood size δ return the points of T with the highest number
of votes in their δ-neighborhood as candidates for good transformations.

The idea behind this algorithm, is that the transformations, that map large parts of
shapes to each other should get significantly more votes than others. The size of the
δ-neighborhood influences the quality of the match.

For more complex classes of transformations two points are not sufficient to determine
a unique transformation, therefore, several points or a point and a direction vector might
be necessary to form a random sample in the first step of the algorithm. The size of a
random sample within one experiment and the shape and the size of the δ-neighborhoods
depend on the class of transformations allowed. Further, a “vote” for a transformation is a
δ-region in the transformation space, which is defined as a set of transformations that map
each element of random sample SB into a δ-neighborhood of the corresponding element of
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SA. For transformation classes other than translations the shape of a δ-region depends on
the sample pair generating it.

Before giving a generic variant of the algorithm we briefly describe the random samples
and δ-regions for the different transformation classes:
For translations, as described above, a random sample consists of a single randomly selected
point of each shape, a ∈ A and b ∈ B. Two points determine uniquely a translation
mapping one point to the other. The transformation space is two-dimensional and the
δ-neighborhood of a translation vector t is defined as a set of vectors that have distance at
most δ to vector t, where distance is measured with respect to the metric chosen in image
space.

In case of rigid motions the transformation space is three-dimensional. A rigid motion
t = (α, vx, vy) is defined by a rotation angle α and a translation v = (vx, vy) and maps a
point b ∈ R2 to a point t(b) = Mb + v, where

M =

(
cos α − sin α
sin α cos α

)
is the rotation matrix.

We will consider two approaches for randomized matching under rigid motions.
Approach 1: A random sample of a shape within one experiment, that is, in the first

step of the algorithm, contains random points a ∈ A and b ∈ B and for each of the points
an angle θa and θb respectively defined by the direction of the tangent line at this point,
i.e., SA = (a, θa), SB = (b, θb). Two such point-angle pairs define uniquely a rigid motion
t = (α, vx, vy), such that θb + α = θa and t(b) = a. Here we have a special case where a
sample consists of different types of data: a point and an angle. So it is reasonable to have
different values for the tolerance bounds: δ = (δ1, δ2), where δ1 defines a neighborhood
of points, and δ2 restricts the maximal allowed difference of directions. Thus, a δ-region
corresponding to a sample pair is the set of rigid motions t′ such that the angle between
the rotated tangent at b and the tangent at a differ by at most δ2 and the distance between
t′(b) and a is at most δ1.

Approach 2: We use a single random point of each shape a ∈ A and b ∈ B as a sample
in one random experiment and record a δ-region in the space of rigid motions as the set of
transformations that map the point b into the δ-neighborhood of point a, while all rotation
angles are allowed.

The δ-region corresponding to a sample pair (a, b) in the second approach has the
shape of a spiral tube extending from 0 to 2π in the direction of the rotation axis, where
for each value α the cross-section parallel to the translation plane has the shape of the
δ-neighborhood with respect to the chosen metric in image space, see section 4.2 for more
details. In the first approach, a δ-region corresponding to a sample pair ((a, θa), (b, θb)) is
a part of the described spiral tube defined by points a, b and tolerance δ1 which is bounded
by the planes α = θa − θb + δ2 and α = θa − θb − δ2.

We also experimented with yet other approaches for rigid motions but the two we
present here give good results and fit into the general framework of our analysis.
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For similarity maps the transformation space is four-dimensional. A similarity map
t = (α, k, vx, vy) is defined by a rotation angle α, scaling factor k and a translation vector
v = (vx, vy). t maps a point b ∈ R2 to a point t(b) = Mb + v, where

M =

(
k cos α −k sin α
k sin α k cos α

)
=

(
m1 −m2

m2 m1

)
.

A random sample from the shapes contains two points SA = (a1, a2) of A, and two points
SB = (b1, b2) of B, which determine a unique similarity transformation t mapping b1

to a1 and b2 to a2. Although a standard way to parameterize the space of similarity
transformations is by (α, k, vx, vy), for computational reasons it is more convenient to use
the parameterization (m1, m2, vx, vy) where m1 = k cos α and m2 = k sin α. For a general
Lp metric a δ-region is then bounded by algebraic surfaces, and for the L1 and L∞ metrics
it is a convex polytope bounded by four pairs of parallel hyperplanes.

A more general class of transformations are the affine maps. An affine transformation
t = (M, v), where

M =

(
m1 m2

m3 m4

)
is a matrix and v = (vx, vy) is a vector, is defined by six parameters. The transformation
space is six-dimensional in this case. An affine transformation t maps a point b ∈ R2 to
a point Mb + v. Three non-collinear points in each shape a1, a2, a3 ∈ A and b1, b2, b3 ∈ B
determine a unique affine transformation that maps bi to ai, i ∈ {1, 2, 3}. Therefore, a
random sample taken in step one of the algorithm consists of three points of each shape.

Generic probabilistic algorithm: Now we can describe the probabilistic algorithm in
a generic way: Given two shapes A and B, a class of allowed transformations T and a
certain parameter δ, we want to find a transformation t ∈ T which lets t(B) in some sense
match best A within a range of δ:

1. Take random samples SA from A and SB from B of an appropriate size s so that there
is a unique transformation mapping SB to SA (e.g., s = 1 for translations and s = 2
for similarity maps). Record the δ-region corresponding to this sample pair, that is,
the set of transformations that map the elements of SB into the δ-neighborhoods of
their corresponding elements in SA.

2. Repeat this experiment many times, say N . Then the number of regions covering
a point t ∈ T approximates a certain probability distribution in the transformation
space.

3. Take the points of T covered by the highest number of δ-regions as candidates for
good transformations.

In the next section we analyze the probability distribution in transformation space
induced by the algorithm and provide the bounds on the number of experiments needed to
approximate the maximum of this distribution within a certain factor with a prespecified
probability.
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3 Generic analysis

3.1 Probability distribution in transformation space

First we introduce some formal notation and definitions. Let Ω denote the sample space,
i.e., the set of all sample pairs (SA, SB). By the definition of our random experiment,
the samples of two figures are drawn independently and uniformly, therefore, we have a
uniform distribution on Ω, i.e., for any subset R ⊂ Ω the probability of R is P (R) = |R|

|Ω| ,

where |·| denotes the Lebesgue measure. Further, we say that a transformed sample t(SB)
is in the δ-neighborhood of a sample SA and write t(SB) ∈ Uδ(SA) if each element of the
sample SB is mapped into the δ-neighborhood of the corresponding element of SA by the
transformation t. The δ-neighborhoods of the elements can be defined with respect to any
metric Lp, in particular with respect to the Euclidean or to the maximum distance.

Let T ⊂ Rd denote the d-dimensional transformation space. Consider the random
variable Y : T × Ω → {0, 1} defined as

Y (t, (SA, SB)) =

{
1 if t(SB) ∈ Uδ(SA),

0 otherwise.

For a transformation t and a sample pair (SA, SB) Y indicates whether SA and SB match
under t, that is, whether t maps SB into a δ-neighborhood of SA. By definition, for a
fixed transformation t the value of Y is 1 exactly for those sample pairs that are in the
δ-neighborhood of each other when the transformation t is applied to B. That means, the
pre-image of 1 of the random variable Y for fixed t is the set

Mδ(t) = {(SA, SB) ∈ Ω|t(SB) ∈ Uδ(SA)} .

Therefore, the probability that within one random experiment the value of Y (t, ·) is 1 is

P (Y (t, ·) = 1) = |Mδ(t)|
|Ω| which we denote by pδ(t).

Thus, we define a similarity measure associated with a transformation t as the Lebesgue
measure of the set Mδ(t) of the possible sample pairs of two shapes that are brought in
the δ-neighborhood of each other by t. Intuitively, this should reflect the perceived notion
of “closeness” of two shapes, which we could confirm by experiments. We formalize the
above observation in the following theorem:

Theorem 3.1. The probability distribution in the transformation space induced by the
generic algorithm described in section 2 has its maximum at the transformation maximizing
the Lebesgue measure of the set Mδ(t) defined as

Mδ(t) = {(SA, SB) ∈ Ω|t(SB) ∈ Uδ(SA)} .

The role of the parameter δ. In the description of the algorithm we introduced a
parameter δ, which defines how far apart two samples are allowed to be that are still
considered as being close. The choice of δ, therefore, controls the trade-off between the
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quality of match and the size of the parts matched. With a small value of δ our algorithm
would find a transformation which maps nearly congruent parts of two shapes to each
other. A large value of δ leads to a transformation which gives a rough match but for
larger parts of the shapes, see Figure 1.

A
topt(B)

A

topt(B)

Figure 1: Matching under translations with large (left) and small (right) values of δ and
the corresponding probability distributions in translation space.

The value of δ does not alone determine whether the matching is partial or complete
or how large the matched parts are, it only specifies how exact the match should be. For
nearly congruent figures a small neighborhood size already leads to a complete-complete
matching, see Figure 2(a). If figure B is nearly congruent to some parts of A, then still
with a small value of δ we detect the occurrences of B in A, that is, find a complete-partial
matching as shown in Figures 2(b) and 2(c). The problem of partial-partial matching is
not uniquely defined since there is a certain correlation between the quality of match and
the size of the matched parts. We address this problem by letting the user specify the
quality of match through the choice of δ, for which we then find the matching parts.

For some applications it might be worth to consider several local maxima of the dis-
tribution, since they can give us additional information about the shapes. For example,
multiple local maxima of the distribution, that are almost equally good, indicate multiple
occurrences of one shape, or its parts, depending on the value of the similarity measure,
within the other, see Figure 2(b).

3.2 Approximation of the probability distribution

In this section we determine how many samples are needed in order to approximate the
probability distribution pδ(t) in the transformation space within a certain accuracy ε with
high probability and analyze the total running time of the algorithm.
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t(B)A

(a) Nearly congruent trademark
images

A

t1(B)

A

t2(B)

(b) Shape B occurs twice in A

A

t(B)

(c) A rough complete-partial
match of horse and carriage
shapes from the MPEG7-Shape B
data set

Figure 2: Matched shapes and the corresponding probability distributions in translation
space

In order to find a transformation covered by the highest number of δ-regions correspond-
ing to the samples, we consider the arrangement of these δ-regions. All transformations in
the same cell of the arrangement have the same region coverage. Therefore, it is sufficient
to traverse the arrangement and take the nodes with the highest number of δ-regions that
contain this node.

We first show that the number of δ-regions covering the deepest cell of the arrangement
gives a good approximation to the maximum value of the probability distribution. The
number of necessary samples is expressed in terms of allowed approximation error ε and
maximal probability of failure η. The running time of the algorithm depends on the time
needed to determine the deepest cell in the arrangement, which grows exponentially with
the dimension of the space, the detailed analysis of running time is given below. We also
show that an approximation of the depth of the arrangement as described by Aronov and
Har-Peled in [7] results in an approximation of the maximum value of the probability
distribution with an error of at most 2ε. The speed-up in determining the deepest cell of
the arrangement results directly in a speed-up of the probabilistic matching algorithm.

Let random variable Z(t) denote the sum of the N independent random variables
Y (t, (SA1, SB1)), . . . , Y (t, (SA N , SB N)), as defined in section 3.1, corresponding to the set
of N samples in our algorithm. Z(t) counts the number of δ-regions produced by N random
experiments that cover t. In the algorithm we find a transformation which is contained
in the largest number δ-regions of the sample set, that is, a transformation t ∈ T that
maximizes the value of Z(t). Let p̃δ(t) denote the ratio of the number of the observed

δ-regions that cover t to the total number of samples, that is p̃δ(t) = Z(t)
N

. p̃δ(t) is an
estimate of pδ(t).
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Using Chernoff bounds, see [17], and the technique described in [9] we will bound the
relative error for the estimate of the probability distribution in the transformation space,
the proofs are given in section 3.2.1.

The following theorem bounds the number of samples needed for an approximation
with a relative error at most ε:

Theorem 3.2. Given two shapes A and B modeled by finite sets of n curves with total
lengths LA, LB respectively and a tolerance value δ > 0, for any parameter values ε, η,
0 < ε, η < 1, the following holds: Let tapp be a transformation maximizing p̃δ(t) and topt

a transformation maximizing pδ(t). After N = O
(

m2

ε2δ2 ln
(
max( 1

η
, m2

ε2δ2 )
))

random experi-

ments, where m = max(LA, LB, nδ), the probability that |p̃δ(tapp)− pδ(topt)| ≥ εpδ(topt) is
at most η. (For δ = (δ1, δ2) in Approach 1 for rigid motions δ2 has to be replaced by δ2δ

2
1

and in the definition of m, δ by δ1.)

Observe that the relative error with respect to pδ(t) is also the relative error with respect
to |Mδ(t)|, which is the similarity measure underlying our algorithm.

3.2.1 Proof of the relative error bound

We first show that for any transformation vector t and a given threshold ν with high
probability we either get a good approximation of pδ(t), if this value is at least ν, or
otherwise make sure that we do not overestimate it.

Lemma 3.3. For all 0 < ε, ν < 1 for a sample S of size N and any transformation vector
t ∈ Rd the following holds:

• pδ(t) ≤ ν ⇒ P (p̃δ(t) > (1 + ε)ν) ≤ e−
ε2νN

3

• pδ(t) ≥ ν ⇒ P (|p̃δ(t)− pδ(t)| > εpδ(t)) ≤ 2e−
ε2νN

4 .

Proof. If pδ(t) ≤ ν:

P (p̃δ(t) > (1 + ε)ν) = P (Z(t) > (1 + ε)νN) = P (erZ(t) ≥ er(1+ε)νN) for all r > 0

≤ E(erZ(t))

er(1+ε)νN
by the Markov inequality [17]

≤ e(er−1)pδ(t)N

er(1+ε)νN
since r ≤ er − 1

≤
(

e(er−1)

er(1+ε)

)νN

=
(
eε−(1+ε) ln(1+ε)

)νN
for r = ln(1 + ε)

≤ e−
ε2νN

3 for 0 < ε < 1 .
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In case pδ(t) ≥ ν:

P (|p̃δ(t)− pδ(t)| > εpδ(t)) = P (|Z(t)− pδ(t)N | > εpδ(t)N)

= P (|Z(t)− E(Z(t))| > εE(Z(t)))

≤ e−
ε2E(Z(t))

2 + e−
ε2E(Z(t))

4

by the simplified Chernoff bound [17, Thm. 4.4,4.5]. Since pδ(t) ≥ ν, we get

P (|p̃δ(t)− pδ(t)| > εpδ(t)) ≤ 2e−
ε2pδ(t)N

4 ≤ 2e−
ε2νN

4 ,
which concludes the proof.

We associate with each cell C of the arrangement A of δ-regions a so-called witness
point p, i.e., a point that lies on a lowest-dimensional face F of A that contributes to
the boundary of C. Observe, that F must be completely contained in the boundary of C
and is in general a connected component of the intersection of i boundaries of δ-regions
with 1 ≤ i ≤ d. Thus, by considering all i-tuples of δ-regions and taking a point in each
connected component of their intersection we can be sure to have at least one witness point
for each cell of the arrangement.

Now consider a witness point t of the δ-region arrangement corresponding to S. The
following lemma states bounds for the witness points of the arrangement.

Lemma 3.4. For all ε, ν, 0 < ε, ν < 1, and a sample set S of size N ≥ 2d
εν

+ d, for a
witness point t ∈ Rd of the arrangement of the δ-regions corresponding to the samples in
S, the following holds:

• pδ(t) ≤ ν ⇒ P (p̃δ(t) > (1 + ε)ν) ≤ e−
ε2(N−d)ν

12

• pδ(t) ≥ ν ⇒ P (|p̃δ(t)− pδ(t)| > εpδ(t)) ≤ 2e−
ε2ν(N−d)

16 .

Proof. Observe that Lemma 3.3 cannot be applied to the witness points directly since
they depend on the experiment, i.e., the chosen samples. However, since a witness point
depends only on i ≤ d samples, the remaining ≥ N − d samples are “random” for that
point and we can apply Lemma 3.3 replacing N by N − d. More specifically:

Let S1, . . . , Si ∈ S, 1 ≤ i ≤ d, be the sample pairs whose δ-regions induce the witness
point t. Consider the sample set Q = S \ {S1, . . . , Si}, |Q| = N − i. Let ZQ(t) and ZS(t)
denote the number of the δ-regions that cover t in sample sets Q and S respectively, and
p̃δQ(t) = ZQ(t)/(N − i), p̃δS(t) = ZS(t)/N . Since we consider closed neighborhoods,
ZQ(t) = ZS(t)− i, p̃δQ(t) ≤ p̃δS(t) and

p̃δQ(t) =
ZS(t)− i

N − i
=

ZS(t)

N

N

N − i
− i

N − i
≥ p̃δS(t)− i

N − i
≥ p̃δS(t)− d

N − d
.

Therefore,

|p̃δS(t)− pδ(t)| ≤ |p̃δQ(t)− pδ(t)|+ |p̃δS(t)− p̃δQ(t)| ≤ |p̃δQ(t)− pδ(t)|+
d

N − d
.
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In case pδ(t) ≤ ν

P (p̃δS(t) > (1 + ε)ν) ≤ P

(
p̃δQ(t) +

d

N − d
> (1 + ε)ν

)
= P

(
p̃δQ(t) > (1 + ε)ν − d

N − d

)
≤ P

(
p̃δQ(t) >

(
1 +

ε

2

)
ν
)

for N ≥ 2d
εν

+ d

≤ e−
(ε/2)2(N−d)ν

3 by Lemma 3.3

= e−
ε2(N−d)ν

12

If pδ(t) ≥ ν:

P (|p̃δS(t)− pδ(t)| > εpδ(t)) ≤ P

(
|p̃δQ(t)− pδ(t)|+

d

N − d
> εpδ(t)

)
≤ P

(
|p̃δQ(t)− pδ(t)| >

ε

2
pδ(t)

)
for N ≥ 2d

εν
+ d

≤ 2e−
(ε/2)2ν(N−d)

4 by Lemma 3.3

= 2e−
ε2ν(N−d)

16

In the above lemmata we used an additional parameter ν for the smallest value of pδ(t)
which we want to approximate well enough. Next, we eliminate this parameter and prove
Theorem 3.2:

Proof. (Of Theorem 3.2)
First, we show that for an arbitrary sequence of N random experiments performed by

the algorithm, the probability that there exists a witness point t′ corresponding to this
sequence, for which the estimate p̃δ(t

′) of pδ(t
′) is bad, can be bounded by a parameter η.

As we have seen above it is sufficient to consider k-tuples of the δ-regions with 1 ≤ k ≤ d
in order to have at least one witness point in each cell of the arrangement. Any such tuple
produces at most a constant number of witness points. We can enumerate all k-tuples of
the δ-regions and, thus, all possible witness points corresponding to an arbitrary sequence
of N experiments. For an arbitrary witness point tij (a witness point number j of the
i-th δ-region tuple) we can apply Lemma 3.4 and, hence bound the probability that a
sequence of N random experiments results in a bad approximation for tij. Note, that if
for some set of random experiments the i-th tuple does not have a witness point number j
or does not have any witness points, the statement of the lemma trivially holds. In other
words, according to Lemma 3.4 the probability that an arbitrary N -sequence gives a bad

approximation for a witness point j produces by i-th tuple is at most 2e−
ε2ν(N−d)

16 .
Since there are at most Nd k-tuples of the regions and, therefore, at most c1N

d witness
points, where c1 is a constant, we have to apply the lemma at most c1N

d times. Then the
probability that there exists a witness point t with pδ(t) ≥ ν and |p̃δ(t)− pδ(t)| > εpδ(t) or
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with pδ(t) < ν and p̃δ(t
′) > (1 + ε)ν is, according to Lemma 3.4, at most Nd2e−

ε2ν(N−d)
16 . A

straightforward calculation shows that for N ≥ c′

ε2ν
ln

(
1

ε2ν

)
with some suitable constant c′

this value is at most e−
ε2ν(N−d)

32 , which is less than η for N ≥ 32
ε2ν

ln 1
η
+d. So the probability

that there exists a witness point, for which the estimate of pδ(t) is bad in the sense described
above, is at most η/2 for

N ≥ c

ε2ν
ln

(
max(

1

η
,

1

ε2ν
)

)
(1)

for some constant c. Observe, that this is a combinatorial result which does not depend on
the spatial position of witness points corresponding to a certain sequence of N experiments.

We now show that in case of translations and rigid motions for any two shapes and
a parameter value δ we can find a value ν∗ such that the maximum of the probability
function pδ is greater or equal ν∗. The statement holds also for similarity transformations
but we will prove it using a different technique.

Clearly, for translations and rigid motions the support T ′ of the function pδ(t) is
bounded. Let VT ′ denote its volume. Also, the δ-regions in the transformation space
have the same measure Vδ for any sample. If every transformation would have equal
probability to be covered by a δ-region, i.e., there would be a uniform distribution of the
neighborhoods in the transformation space, then this probability would be ν∗ = Vδ

VT ′
.

Consequently, for any arbitrary distribution there exists at least one transformation t
such that pδ(t) ≥ ν∗. Since we are interested in transformations maximizing the probability
it is sufficient to have a good approximation for transformation with coverage probability
≥ ν∗, and not to overestimate the probability for the other transformations.

In the case of translations, the support of pδ(t) is T ′ = (A⊕−B)⊕Cδ, where Cδ denotes
a disk of radius δ. Consider the connected components A1, . . . , Ak of A and B1, . . . , Bl of
B, k, l ≤ n, let s1, . . . , sk and r1, . . . , rl denote their lengths. Since T ′ =

⋃
i,j(Ai⊕ (−Bj)⊕

Cδ), its area is at most
∑

i,j |Ai ⊕ (−Bj)⊕ Cδ|. For a pair of components Ai, Bj the
corresponding area in translation space is maximized if Ai and Bj both are a straight line
segment and these segments are orthogonal. Then the area of T ′ is bounded by

VT ′ ≤
∑
i,j

(si + 2δ)(rj + 2δ) =
∑

i

(si + 2δ)
∑

j

(rj + 2δ) = (LA + 2kδ)(LB + 2lδ)

≤ (LA + 2nδ)(LB + 2nδ) ≤ 16m2, where m = max(LA, LB, nδ).

The δ-regions in translation space have equal shape and size, which correspond to the
δ-neighborhoods in the image space. The area of a δ-neighborhood with respect to the
Lp-metric is Vδ = cpδ

2, where cp is a constant dependent on the choice of the metric,

2 ≤ cp ≤ 4 for 1 ≤ p ≤ ∞. Then ν∗ ≥ δ2

8m2 .
In case of rigid motions, for any fixed rotation angle α the cross-section of T ′ corre-

sponds to the support for translations and, therefore, its area is bounded by 16m2. By
Cavalieri’s principle, the volume VT ′ is then bounded for both approaches by 32πm2. For
both approaches the cross-section of a δ-region corresponds to a δ-region for translations,
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i.e., a δ-neighborhood. Therefore, its area is at least 2δ2
1 in the first approach and 2δ2 in

the second approach for any underlying Lp-metric, 1 ≤ p ≤ ∞. Consequently, Vδ ≥ 4δ2
1δ2

for the first approach and Vδ ≥ 4πδ2 for the second approach. Hence, we have ν∗ ≥ δ2
1δ2

8πm2

and ν∗ ≥ δ2

8m2 , respectively.
For the similarities we use a different approach since the support of the probability

distribution in transformation space cannot be bounded as above. Instead, we argue as
follows: Suppose that the shape B is scaled by factor δ

DB
, where DB is the diameter of

B, so that the diameter of the scaled shape B is δ. If A contains a connected component
of length at least δ, then we can place the scaled shape B in such a way that for any
point of a part of A of length δ the distance to any point of the scaled B is at most δ.
Therefore, the measure of the set Mδ(t) for that t is at least L2

B · δ2, details about the
set Mδ(t) for similarity maps are given in section 4.3. The corresponding value of pδ is

pδ(t) = |Mδ(t)|
|Ω| ≥ L2

B ·δ
2

L2
AL2

B
= δ2

L2
A
. Otherwise, the largest connected component of A must

have length at least LA

n
. For the transformation t that maps the scaled B to the largest

component of A the measure of Mδ(t) is then at least
L2

A

n2 L2
B and pδ(t) ≥ 1

n2 . Therefore,

ν∗ ≥ δ2

m2 .
Let t∗ be a witness point of the cell of the arrangement containing topt. Plugging the

corresponding value of ν∗ in the formula (1) for N we obtain that after

N = O

(
m2

ε2δ2
ln

(
max(

1

η
,

m2

ε2δ2
)

))
experiments for all witness points, in particular for t∗ and tapp, and for topt it holds with
probability at least 1− η/2 that |p̃δ(t)− pδ(t)| ≤ εpδ(t). Combining these error bounds we
get

p̃δ(tapp) ≥ p̃δ(t
∗) since tapp maximizes p̃δ(t)

= p̃δ(topt) for topt is in the cell witnessed by t∗

≥ (1− ε)pδ(topt) with probability 1− η/2 by Lemma 3.3

and

p̃δ(tapp) ≤ (1 + ε)pδ(tapp)

≤ (1 + ε)pδ(topt) since (topt) maximizes pδ(t)

Therefore, |p̃δ(tapp)− pδ(topt)| ≤ εpδ(topt) with probability at least 1− η.

3.2.2 Running time

The running time of the algorithm consists of the time needed to generate N random
samples denoted by Tgen(n, N), where n is the number of curves in the shape, and the time
needed to determine the depth of the arrangement of N δ-regions denoted by Tdepth(N).

13



Given a natural parameterization of a curve, a random point on that curve can be generated
in constant time. For generating a random point from a set of n curves we first select a
curve randomly with probability proportional to the relative length of the curve and then
take a random point from the selected curve. The selection of a random segment can be
trivially done in time linear in n. If we first compute the relative curve lengths and record
the corresponding probabilities to allow for binary search during the generation process
we get preprocessing time linear in n and O(log n) generation time for a single point.
Therefore, Tgen(n, N) = O(n + N log n).

In order to determine the depth of the arrangement of N δ-regions we can construct this
arrangement and during the construction keep record of the depth of the cells. Then at the
end of the construction algorithm we know the depth of the deepest cell. For general metrics
Lp and the considered classes of transformations the boundaries of δ-regions are algebraic
hypersurfaces. By Basu et al. [8], the arrangement of such surfaces can be constructed and
traversed in Tdepth(N) = O(Nd+1) time.

Summarizing these results and using Theorem 3.2 we obtain the following theorem:

Theorem 3.5. Given two shapes A and B modeled by sets of n curves in the plane of
total lengths LA and LB respectively, and parameters ε, η, 0 < ε, η < 1. Let topt denote the
transformation maximizing pδ(t). In time O(n+N log n+Nd+1), where d is the dimension
of the transformation space, the generic probabilistic algorithm computes a transformation

tapp such that |p̃δ(tapp)− pδ(topt)| ≤ εpδ(topt) for N = O
(

m2

ε2δ2 ln
(
max( 1

η
, m2

ε2δ2 )
))

, where

m = max(LA, LB, nδ). (For δ = (δ1, δ2) in Approach 1 for rigid motions δ2 has to be
replaced by δ2δ

2
1 and in the definition of m, δ by δ1.)

Observe that, at least for sufficiently small values of δ, the runtime of the algorithm
depends much more on the parameters ε and η than on the combinatorial input size n,
which is only needed in the preprocessing and the drawing of random samples.

The running time of the algorithm is actually better than that stated in Theorem 3.5
for translations and for similarities in combination with the L1 and L∞ metrics. In case
of translations, the δ-regions are pseudo-disks and their arrangement can be constructed
straightforwardly in time O(N2). For similarities in combination with the L1 or L∞ metric
the δ-regions in transformation space are bounded by a constant number of 3-dimensional
hyperplanes. Using the algorithm of Edelsbrunner et al. [10] the arrangement of N such
δ-regions can be constructed in O(N4) time.

In order to achieve a speed up of the algorithm a combination with the depth approxi-
mation algorithm by Aronov and Har-Peled [7] is possible. Given a set of N object in Rd

whose arrangement has depth D and a prespecified parameter ε > 0, their algorithm finds
a point of depth at least (1− ε)D in O (N + TDT(N, ε−2 log n) log n) expected time, where
TDT(N, k) is the running time of a depth thresholding algorithm. A depth thresholding
algorithm takes a set S of N objects and an integer k > 0 and returns the depth of the
arrangement of S together with a witness point if this depth is at most k, or tells that the
depth is greater than k.

It is easy to verify that in combination with depth approximation the probabilistic
algorithm gives an approximation of pδ(topt) with an error at most 2ε. Thus, provided a fast
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depth thresholding algorithm exists, this combination would result in a significant speed
up of the probabilistic algorithm. For translations, that is for arrangement of pseudo-disks
in the plane, a fast thresholding algorithm is known to exist [7], which results in running
time Tdepth(N) = O(Nε−2 log N).

4 Detailed analysis for different transformation classes

Common to all transformations is the definition of the δ-neighborhood of a point in image
space. The δ-neighborhood of a point a ∈ R2 is defined as the set of points in R2 that
have distance at most δ to a. Formally: Uδ(a) = {p ∈ R2|dist(p, a) ≤ δ}, where dist(p, a)
denotes the distance between two points according to a chosen metric. Typically we would
use Euclidean distance (L2 metric) or maximum norm distance (L∞ metric) for easier
computations.

4.1 Translations

The simplest class of transformations are translations. The translation space is two-
dimensional. Two points a, b ∈ R2 define uniquely a translation t that maps b to a,
t = a− b. Therefore, a random sample of each shape in step one of our algorithm consist
of a single point and the sample space is Ω = A × B. The set Mδ(t) is then the set of
the point pairs of the two shapes that are mapped to the δ-neighborhood of each other by
the transformation t, formally, Mδ(t) = {(a, b) ∈ A×B|t(b) ∈ Uδ(a)}. To maximize the
measure of this set means to find a transformation that maps largest possible parts of the
shapes into proximity of each other, which comes close to the intuitive notion of matching
of two shapes.

Note, that there is a direct connection between the set Mδ(t) and a free space diagram,
which was first defined for polygonal curves by Alt and Godau in [3]. Let f : I →
R2, g : J → R2 be two curves, with parameter intervals I, J ⊂ R. The set Fδ(f, g) :=
{(s, r) ∈ I × J | dist(f(s)− g(r)) ≤ δ} denotes the free space of f and g, where dist(·, ·)
denotes the distance measure in image space. The partition of I×J into regions belonging
or not belonging to Fδ(f, g) is called the free space diagram. Obviously, we can parameterize
a set of curves over the interval [0, 1] ⊂ R and, thus, view the shapes A and B as functions
A : [0, 1] → R2, B : [0, 1] → R2. Then, the free space of the set A and the set B
transformed by t is defined as Fδ(A, t(B)) := {(s, r) ∈ [0, 1]2 | dist(A(s)− t(B(r))) ≤ δ},
see Figure 3 for an example.

It is easy to see, that there is a one-to-one correspondence between the set Mδ(t)
defined above and the set Fδ(A, t(B)). Furthermore, the measure of the set Fδ(A, t(B)) is
exactly the measure of Mδ(t) normalized by the total measure of sampling space, that is,

pδ(t) = |Mδ(t)|
|A×B| = |Fδ(A, t(B))|.

Another observation that we make is, if a translation t corresponds to the sample pair
s = (a, b) and a transformation t′ is covered by the δ-region corresponding to s, then the
distance between vectors t and t′ is at most δ under the same distance measure as for
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0
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Figure 3: Free space diagram of two sets of curves. White regions denote the free space
Fδ(A, t(B)).

points. That means every sample pair produces a δ-region of the same size and shape in
the transformation space. Thus, in case of translations we do not need to record a sample
pair (a, b), but only the translation t = a− b and then consider the δ-neighborhoods of the
translation vectors, which are defined in the same way as the δ-neighborhoods of points.

For a general Lp-metric, 1 ≤ p ≤ ∞, the arrangement of the δ-regions is an arrangement
of pseudo-disks in the plane, which can be computed in O(N2) time, where N is the number
of objects.

If for each sample pair (a, b) we record a translation that maps b to a instead of a δ-
region, we get a certain distribution of “votes” in translation space. It turns out, that the
density function of this probability distribution is exactly the weighted generalized Radon
transform of the shape A with respect to shape B, [12, 22]. The distribution induced by
δ-regions corresponds to a “smoothed” version of the generalized Radon transform. In
fact, this distribution results from a convolution with a function that is constant over a
δ-neighborhood of the origin and zero elsewhere and integrates to one.

4.2 Rigid motions

The space of rigid motions T is three dimensional, T = [0, 2π) × R2. For two points in
the plane there is no unique rigid motion that maps one point to the other, rather for
every rotation angle we can find a unique translation vector such that the resulting rigid
motion performs the desired mapping. For two points the set of rigid motions that map
one of the points to the other is, therefore, a one dimensional curve in three dimensional
transformation space.

In Approach 1 for the rigid motions as described in section 2 a sample of a shape
taken within one random experiment in the first step of the generic algorithm consists of
a random point of the shape and the angle defined by the (interpolated) direction of the
tangent line at that point. The sample space Ω is a subset of A×B × [0, 2π]2.

We defined a δ-region in the transformation space corresponding to a sample pair as
the set of transformations that map each component of one sample into a δ-neighborhood

16



of the corresponding component of the other sample. So far we interpreted δ as a distance
parameter for points but it does not make much sense for the directions. Therefore, in this
case we need two parameters δ = (δ1, δ2), where δ1 controls the distance that points are
allowed to have to be considered close, and δ2 represents the maximum difference in the
directions that are still considered to be similar.

A pair of samples SA = (a, θa), SB = (b, θb) gives us a following neighborhood in the
space of rigid motions: the rotation angles are restricted to the interval I = [α− δ2/2, α +
δ2/2], where α = θa − θb, and for each α′ ∈ I the allowed translations are v′ such that
dist(α′(b) + v′, a) ≤ δ1, see Figure 4 for an illustration.

a

b
b′

δ2

δ1

δ2

7,5
7,0

6,5
−0,5 −1,0 6,0

1,2

−1,5 −2,0 5,5−2,5

1,4

(a) (b) (c)

Figure 4: δ-region in the space of rigid motions corresponding to a pair of points a ∈ A and
b ∈ B. (a) Points a and b with translation vectors corresponding to some rotated positions
of b. (b) Projection of the δ-region to the translation plane for δ1 = 1. (c) δ-region in the
3-dimensional space of rigid motions.

Then by taking the transformation that is covered by the most neighborhoods we
maximize the measure of the set of point pairs, that are close to each other (have distance
at most δ1) and have similar tangent directions (the directions differ by at most δ2). Note,
that this definition of a good match is different from that we used for the translations,
since for translations we did not take the direction of curves into account.

Although, there is still a connection to the free space diagram of the shapes. Consider
again shapes to be parameterized over the interval [0, 1], A : [0, 1] → R2, B : [0, 1] → R2.
Let function g : [0, 1]2 → R denote the distance between the corresponding points on the
shapes with respect to chosen metric, g(s, r) = dist(A(s), B(r)). The free space Fδ1(A, B)
in the free space diagram is defined as the set of pairs (s, r) for which g(s, r) ≤ δ1. The
additional condition about the closeness of tangent directions can be expressed by a func-
tion h : [0, 1]2 → R which assigns to two parameter values the absolute difference of
the tangent directions of the corresponding points. Let θA(s), θB(r) denote the angles of
slope of the tangent lines to the points A(s) and B(r) respectively. Then the function
h can be written as h(s, r) = |θA(s)− θB(r)|. Similar to the free space Fδ1 with respect
to distance function g we can define free space Hδ2 with respect to direction distance
function h, Hδ2(A, B) = {(s, r) ∈ [0, 1]2 | h(s, r) ≤ δ2}. The set of the “good” samples
for a fixed rigid motion t then corresponds to the intersection of the two free spaces:
Mδ1,δ2(t) = {(A(s), θA(s), B(r), θB(r)) | (s, r) ∈ Fδ1(A, t(B)) ∩Hδ2(A, t(B))}. The proba-
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bility for a rigid motion t to be covered by a δ-region corresponding to a random sample
pair is then pδ(t) = |Mδ(t)|

|Ω| = |Fδ1(A, t(B)) ∩Hδ2(A, t(B))|.
In Approach 2 we use a single random point of each shape a ∈ A and b ∈ B as a sample

in one random experiment and record a δ-region in the space of rigid motions as a set
of transformations that map the point b into the δ-neighborhood of point a. The sample
space is in this case Ω = A × B. A δ-region corresponding to a sample (a, b) ∈ Ω has a
shape of a spiral tube, which projection to the translation vector plane has a shape of a
circular ring with center a and radius

∥∥b̄
∥∥ of width δ as shown in Figure 5.

a

btrajectory
of b

8,0
6,4

0

1

4,8

2

3

4

5

4,83,2

6

1,6 3,20,0 1,6−1,6 0,0−3,2

(a) (b) (c)

Figure 5: δ-region in the space of rigid motions corresponding to a pair of points a ∈ A and
b ∈ B. (a) Points a and b with translation vectors corresponding to some rotated positions
of b. (b) Projection of the δ-region to the translation plane for δ = 1. (c) δ-region in the
3-dimensional space of rigid motions.

Now by taking a rigid motion covered by the most neighborhoods we find a trans-
formation that maximizes the measure of the set of point pairs that are mapped into
δ-neighborhood of each other by this transformation, just as in case of translations. That
is, the sample space Ω is A×B, the set of sample pairs that “vote” for a rigid motion t is
Mδ(t) = {(a, b) ∈ A×B | t(b) ∈ Uδ(a)} and the probability of t to be covered by a region

corresponding to a randomly selected sample pair is pδ(t) = |Mδ(t)|
|A×B| = |Fδ(A, t(B))|.

4.3 Similarity maps

In case of similarity maps a sample taken from one shape consists of two random points,
since two pairs of points in the plane determine uniquely a similarity transformation that
maps one pair to the other. The sample space is then Ω = A2 × B2. According to our
analysis the similarity map with maximum coverage of the δ-regions is the one maximizing
the measure of the set

Mδ(t) =
{
(a1, a2, b1, b2) ∈ A2 ×B2|dist(t(b1), a1) ≤ δ and dist(t(b2), a2) ≤ δ

}
,

which is the set of pairs of point pairs that are at most δ apart. This property is
no longer intuitive with respect to matching shapes. The following simple considera-
tion shows, however, that maximizing the Lebesgue measure of Mδ(t) means also to
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maximize the Lebesgue measure of the set of point pairs that have distance at most δ,
M ′

δ(t) = {(a, b) ∈ A×B|dist(t(b), a) ≤ δ}. Up to the order of the elements Mδ(t) is the
same as M ′2

δ (t). Additionally, in our random experiment we exclude samples where a1 = a2

or b1 = b2 because in these cases there is either no similarity transformation that maps one
sample to the other or it is not uniquely defined. Those pairs are, of course, not excluded
in the set M ′2

δ (t), but they make up a subset of dimension six in an eight dimensional space
(recall, we have four points each of dimension two) and have, therefore, Lebesgue measure
zero. So, the measure of the set Mδ(t) is exactly |M ′2

δ (t)| = |M ′
δ(t)|

2. Since measure of a
set is always non-negative, both functions have maxima at the same values of t.

Note, that if p̃δ(t) is a good approximation of pδ(t), more precisely, an approximation
with a relative error at most ε, then m̃δ(t) =

√
p̃δ(t) |Ω| is an approximation of mδ = |M ′

δ(t)|
with a relative error at most ε: We have that p̃δ(t) ≥ (1− ε)pδ(t) and p̃δ(t) ≤ (1 + ε)pδ(t),
then

m̃δ(t) =
√

p̃δ(t) |Ω|
≥

√
(1− ε)pδ(t) |Ω|

=
√

(1− ε) |Mδ(t)|
=

√
(1− ε)mδ(t)

≥ (1− ε)mδ(t) since 0 ≤ 1− ε ≤ 1

and

m̃δ(t) =
√

p̃δ(t) |Ω|
≤

√
(1 + ε)pδ(t) |Ω|

=
√

(1 + ε)mδ(t)

≤ (1 + ε)mδ(t) since 1 + ε ≥ 1

Therefore, for similarities as well as for translations and rigid motions the probabilistic
algorithm finds a transformation that approximately maximizes the measure of the set of
point pairs that are in a δ-neighborhood of each other.

Although a standard way to parameterize the space of similarity transformations is
by rotation angle α, scaling factor k and a translation vector v = (vx, vy) in order to
avoid trigonometric functions in the definition of δ-regions it is more convenient to use the
parameterization (m1, m2, vx, vy) where m1 = k cos α and m2 = k sin α. For general Lp

metric a δ-region is then bounded by algebraic surfaces, and for the L1 and L∞ metrics it
is a convex polytope bounded by four pairs of parallel hyperplanes. An arrangement of N
convex polytopes in d dimensions can be computed and traversed in time O(Nd), see [10],
which is O(N4) for similarity maps.
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4.4 Affine maps

According to our analysis, an affine transformation which is covered by the most δ-regions
maximizes the measure of the set

Mδ(t) =
{
(a1, a2, a3, b1, b2, b3) ∈ A3 ×B3|dist(t(bi), ai) ≤ δ, i ∈ {1, 2, 3}

}
.

With a similar observation as for similarity maps, we find that the measure of this set is
maximized exactly if the measure of the set of point pairs which are in the δ-neighborhood
of each other is maximized.

5 Conclusions

In this paper we presented a probabilistic approach for matching two shapes which attempts
to come close to the human notion of match and is easy to implement. The algorithm is
robust to noise, deformations and cracks in the representation of shapes and does not
require shapes to be modelled by a single contour line. It is applicable to the problem of
complete and partial matching. We achieved encouraging matching results in experiments
with the MPEG7-Shape B data set and a selection of trademark images.
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