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ABSTRACT
We present a novel matching and similarity evaluation method
for planar geometric shapes represented by sets of polygo-
nal curves. Given two shapes, the matching algorithm ran-
domly generates a point sample from each shape and records
a vote for a transformation which maps one sample to the
other. The experiment is repeated many times. Clusters
of votes in the transformation space indicate good candi-
date transformations for matching the two shapes. Unlike
most voting schemes, though, the samples taken in one ran-
dom experiment are extended as much as possible and the
vote is weighted depending on the samples. The best clus-
ters are those with a large total weight. The second part of
the method is a resemblance evaluation of the two matched
shapes. The definition of our resemblance function incorpo-
rates the proximity of line segments as well as the similarity
of their slopes. The system is evaluated using the MPEG-7
shape silhouette database and a collection of 10 745 trade
mark images. The experiments demonstrate a high perfor-
mance of our algorithms for contour shapes as well as for
trademark images.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; I.5.3 [Pattern Recognition]: Clustering

General Terms
Algorithms, Experimentation

Keywords
Trademark image retrieval, Shape matching, Probabilistic
algorithms, Shape similarity
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1. INTRODUCTION
Motivated by the task of automated retrieval of figurative

images such as trademark images we developed an algorithm
for the evaluation of shape similarity. It consists of two main
phases: matching and evaluation of the resemblance of the
matched shapes.

The approach we introduce for matching two geometric
shapes S1 and S2 modeled by sets of plane polygonal curves,
is close to an intuitive notion of “matching”, i.e., find one
or more candidates for the best transformation, that when
applied to the shape S1 maps the most similar parts of the
two shapes to each other. As allowable classes of transfor-
mations we will consider translations, homotheties (scaling
and translation), rigid motions (rotation and translation),
similarities (rotation, scaling, and translation), and general
affine maps.

The matching step of our algorithm is a voting scheme.
Unlike in most well known approaches including geometric
hashing [16], pose clustering (generalized Hough transform)
[2, 11, 12, 14], and the random sample consensus (RANSAC)
[10], we do not use a minimum sample of features to compute
the model parameters (the matching transformations in this
case), but we find large consistent sequences of the corre-
sponding points of two shapes voting for the same transfor-
mation. This transformation gets a vote which is weighted
depending on the size of the sample and the quality of the
match. Thus, we get a distribution of weighted votes in
the transformation parameter space. Similar as in the pose
clustering approach, we then take the largest clusters as can-
didate transformations, where largest clusters are those with
the highest total weight.

After several candidate transformations of one shape have
been identified by the matching algorithm, each of these
transformations ti is applied to the shape S1 and the sim-
ilarity of the shape S2 and the transformed shape ti(S1) is
validated using the resemblance function described in sec-
tion 3. The proposed resemblance function incorporates two
perceptual factors: proximity and parallelism (or factor of
direction), that is, the resemblance value is high if the dis-
tances between the points of two shapes are small and the
line segments contained in the shapes are nearly parallel.
The transformation with the highest similarity value is then
selected as the best match.

We address the problem of matching the complete shape
S1 to the complete shape S2, called complete-complete match-
ing (CCM). In addition, we consider the problem of complete-
partial matching (CPM), i.e., matching S1 completely as
good as possible to some part of S2, and partial-partial
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matching (PPM), i.e., matching some part of S1 as good as
possible to some part of S2. Clearly, both partial matching
problems CPM and PPM are not uniquely specified since
there is a trade-off between the quality of the match and
the size of the matched parts. Which of these two criteria
is more important, depends on the application. We address
this problem by introducing a parameter which regulates the
influence of the quality of match and the matched size on
the similarity value.

Both the matching procedure and the resemblance func-
tion are designed to be robust with respect to noise and to
differences in the representations of the the shapes. The
data used in the experiments described in section 4 show
the importance of that robustness.

2. THE MATCHING ALGORITHM
Given two sets S1, S2 of planar polygonal curves, a trans-

formation t is searched for, that best maps S1 to S2. The
classes of allowable transformations considered here are trans-
lations, homotheties (scaling and translation), rigid motions
(rotation and translation), similarities preserving the direc-
tion of rotation (rotation, scaling and translation – without
reflection), and general affine maps.

The intuition behind that matching is that features of
the first set should be mapped into the proximity of corre-
sponding features of the second set. If the images are not
similar as a whole but do contain several independent sub-
sets of corresponding features, there may not exist a single
transformation but several transformations, each one match-
ing only a subset of corresponding features. The course of
the polygonal curves may be very helpful in identifying cor-
responding features. On the other hand different segmen-
tations at crossings or different appearances of discontinu-
ities may make this identification more difficult. Therefore a
probabilistic voting scheme is applied here that uses votes of
different weight and gathers them to form a set of candidate
transformations.

In [3] we described a probabilistic matching approach re-
lated to the generalized Hough transform and briefly pre-
sented the idea of the new voting scheme which is described
in detail here: During one random experiment a sample is
a set of pairs of corresponding points from the two shapes.
The quality of the match between two finite ordered point
sets is measured by the weighted sum of quadratic distances
between the corresponding points. The set of corresponding
points is iteratively extended until no further data are avail-
able or the samples are no longer consistent. The resulting
preliminary transformation is weighted with the quality of
the match and the size of the matched point sets. Then we
get a weighted sample of the transformation space, where
the neighborhoods with large weight are likely to contain
candidates for transformations resulting in a good match
for the shapes. The idea behind this, is that a transforma-
tion which gives a good match for the shapes, would give a
good match for larger sets of points on these shapes. The
details on selecting the point sets and computing the candi-
date transformations are presented in the following.

The problem of computing preliminary transformations
consists of two subproblems: one is to find correspondences
between features, the other is to find a transformation that
maps the corresponding features to each other.

2.1 Finding correspondences
Conspicuous features of curves arise from regions of high

curvature [5] – regarding polylines these regions are the ver-
tices. But not every vertex, even though its turning angle
may be large, yields a feature recognizable by a human ob-
server. For this reason, the mapping algorithm tries to find
corresponding vertices but also may match a vertex without
corresponding peer to a point lying on a line segment.

The initial part of every vote is the random choice of a sin-
gle vertex in each of the two sets of polylines, and the direc-
tion for traversing the list of subsequent vertices (also both
possible directions may be processed). The pairs of points
are added to the set one by one. In each iteration step the
matching transformation is updated. The final transforma-
tion for the set is weighted and handed over to the clustering
algorithm.

Let p0 be the randomly chosen vertex from the first set S1

of planar polylines and let p1, . . . , pk be the subsequent ver-
tices with respect to the randomly chosen direction. Analo-
gous let q0 be the randomly chosen vertex from the second
set S2 of planar polylines and let q1, . . . , ql be the subsequent
vertices. The pair (p0, q0) is added to the – so far empty –
sample set S.

In each iteration step the distances from the last added
pair of points to the next vertices on the corresponding poly-
lines are computed. If the two computed distances are nearly
equal, the next two vertices are taken as a corresponding
pair which is added to the sample set S. Otherwise a vertex
surrogate is created for the polyline with a larger distance.
A surrogate is a point lying on an edge of the polyline, but
nevertheless is treated like a vertex. It is chosen to have the
same distance to its predecessor as the corresponding two
vertices of the other polyline have.

When the end of a polyline is reached, then starting from
the initial pair the traversal is performed in the other direc-
tion.

2.2 Calculating the transformations
For every new pair of vertices or vertex surrogates added

to the sample set S a transformation is computed based
on a least squares approach. The easiest way would be
to compute the transformation that minimizes the sum of
the squared distances of the vertices. This would favor
parts with many vertices over parts with less vertices re-
gardless of the extent and the expressiveness. In order to
avoid this, we compute the transformation t ∈ T that min-
imizes the sum of the weighted squared distances ε(t) =∑

(pi,qi)∈S w(pi, qi) ‖qi − t(pi)‖2 with w(pi, qi) being half the

length of the edges incident to pi and qj .
If the class of the allowed transformations does not include

scaling, which is the case for translations and rigid motions,
we can determine vertex correspondences as described above
and then compute the transformation minimizing the sum of
weighted squared distances. However, if scaling is allowed,
then the process of finding correspondences is no longer inde-
pendent from the transformation, since the transformation
could change distances between the vertices. We cope with
this problem by using a prescaling factor s, which is ran-
domly chosen such that ld(s) is normally distributed with
mean value ld(s̄), where s̄ is the prescaling factor of the
transformation rated best so far with the initial value of s̄
set to 1. Ss

1 denotes the set S1 scaled by s. For the rest
of the vote, every operation concerning the first set S1 (e.g.
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computing the distance between two vertices) is performed
on Ss

1 .
Detailed analysis shows, that for all the classes of trans-

formations considered here, i.e., translations, homotheties,
rigid motions, similarities, and affine maps, having com-
puted the transformation minimizing the weighted sum of
squared distances for a sample set S, we can compute in con-
stant time the optimal transformation for the set S∪{(p, q)},
which is S extended by a new pair of points p and q. This
fact is important since we iteratively add new pairs of cor-
responding points to our sample set and, thus, compute a
sequence of transformations until the sample is no longer
consistent or all data points are added to the set.

2.3 Checking Consistency
In each iteration step it is checked whether the error intro-

duced by the new added pair is still within tolerance bounds.
We define the maximum tolerated error for a sample as a
linear function of the perimeter of the bounding box con-
taining the sample. The perimeter of the bounding box is
multiplied with a constant parameter called relative error
threshold. If the error introduced by the last added pair is
too big, the traversal of the polylines is ceased, as illustrated
in Figures 1 and 2: the bold polylines are traversed up to the
end of the dashed parts. The transformation for which the
error was farthest from the tolerance bound is weighted and
handed over to the clustering algorithm (the transformation
calculated for the bold polylines up to the beginning of the
dashed line in the example).

This definition of the stop criterion and the choice of the
best index are invariant under scalings and can be done in
constant time. To achieve invariance under rotations also,
the bounding box had to be replaced by the minimum en-
closing circle.

Figure 1: Two instances of the MPEG-7 shape B
data set (ray-7, ray-20 and both mapped).

Figure 2: Perimeter of the bounding box vs. error
of last added pair of points. The part of the polyline
defining the transformation for this vote is plotted
as a solid light grey line, the part skipped is plotted
dashed. The solid dark line is the maximum toler-
ated error bound.

2.4 Weighting the transformations
The two factors that have to be considered for weighting

a transformation t are the expressiveness of the sample and
the quality of the match. Let ε be the sum of weighted
squared distances, let w(S) be the sum of all weights of
the pairs of points in the sample set S, and let Dbb be the
diameter of the bounding-box containing the covered part
of the polyline. Defining the relative root mean square error
e =

√
ε/w(S)/Dbb yields a value representing the quality of

the match which is invariant under scalings.
The match score or weight W (t) of a transformation t is

then defined as W (t) = l/(1+γ·e) with γ being an arbitrarily
chosen constant for balancing out the impact of the length
l and the error e.

The most common technique for the clustering of transfor-
mations (often referred to as pose clustering) – histogram-
ming the transformations in the multidimensional transfor-
mation space (see [12]) – discards the effects on the trans-
formed shapes. Two rotations may yield nearly the same
results if applied to a shape with its center being the origin,
or totally different results if the shape’s center is far away
from the origin. To avoid this imbalance, a distance mea-
sure for transformations is used here, which considers the
shapes’ properties. Let t1 and t2 be two arbitrary transfor-
mations and let S1 be the transformed shape. The distance
measure dS1(t1, t2) = maxp∈S′ ‖t1(p)− t2(p)‖, with S′ be-
ing the set of the vertices of the bounding box of S1 forms
a metric space for affine maps, under the assumption that
the four points of S′ are pairwise different. The distance
between two transformations depends, thus, on the shape
to be transformed and reflects the difference in the image of
the shape under the considered transformations.

2.5 Clustering
A cluster in our sense is a region of limited diameter, which

subsumes a considerable amount of weight of the enclosed
input points (transformations). In the clustering process we
want to find all clusters with large weight because they give
evidence of good matching transformations.

Let Tn be the set of n transformations generated by n
random experiments and Wi be the weight of a transforma-
tion ti ∈ Tn. For a fixed cluster radius rc a cluster Ct with
center t ∈ Tn is defined as the set {ti ∈ Tn|d(ti, t) < rc}
that is the set of transformations with distance less than rc

to the center. The weight of a cluster is defined as the sum
of the weights of its elements. This definition is related to
what is called naive density estimator in statistics.
The transformations that are considered as center of a clus-
ter are identified as follows: ti ∈ Tn is called dominator
of tj ∈ Tn if and only if d(ti, tj) < rc, Wi > Wj , and no
other transformation is dominator of ti. Each transforma-
tion t ∈ Tn that has no dominator is the center of a cluster
Ct. In other words: a transformation t either is the center
of a cluster or it is contained in at least one cluster of its
dominators. This definition allows for a fast computation of
all clusters and their weights.

The clusters may be determined by iteratively taking the
transformation with highest weight as center of a cluster, re-
moving the cluster’s members from the set of potential cen-
ters and continuing with the reduced set. A naive algorithm
would need time quadratic in the number of transformation.
This can be decreased by partitioning the transformation
space and organizing it in a tree structure.
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Every node of the tree may store a cluster which stores the
transformations belonging to it. A node uj

i on level i with in-
dex j represents a ball with some radius ri around its center
(its cluster’s center). It may have arbitrarily many children,
each one representing a ball with radius ri+1 = ri/2 and a
center that lies inside the ball represented by uj

i , see Figure
3 for a schematic illustration. The root node represents a
ball with radius r0 containing all sample transformations.
The smallest radius in the tree is the given cluster radius rc.
The children of a node are ordered, each one only respon-
sible for the part of the space not covered by its preceding
siblings.

u0

u3
1

u2
1

u1
1

u1
2

u2
2

u3
2

rc

Figure 3: Partition of the transformation space.

The center c0 and the radius r0 of the ball represented
by the root node may be easily computed for the classes of
transformations that do not allow scalings: Let cbb1, cbb2

denote the centers and Dbb1, Dbb2 denote the diameter of
the bounding boxes of the shapes S1 and S2 respectively.
Then c0 is chosen to be the translation defined by cbb2−cbb1.
Any transformation t generated by the random experiments
will fulfill the condition that the transformed bounding box
of S1 at least touches the bounding box of S2. Therefore
dS1(t, c0) ≤ Dbb1/2 + Dbb2/2 + Dbb1.

For the classes of transformations that do allow scalings
the space is not bounded in such a natural way. However, if
the application provides a bound on the maximum scaling
factor smax the distance between any transformation t (ho-
mothety or similarity) and c0 can be bounded in a similar
way: dS1(t, c0) ≤ Dbb1/2 + Dbb2/2 + smaxDbb1. If no such
bound is given, the root node and its radius can be updated
during the construction of the tree.

The clustering is performed as follows: The sample trans-
formations are sorted according to their weight and they are
processed in descending order. Beginning from the empty
tree with root node (c0, r0) in each iteration step a trans-
formation t is added to the tree. First, the tree is searched
for all clusters such that t is contained in a ball of radius rc

around the center of the cluster. If such clusters exist, then
t is added to all these clusters. If no cluster containing t is
found, a new cluster C with center t is created and inserted
into the tree.

When a node with center tu and radius r is searched for
clusters neighboring a transformation t, the distance d(tu, t)

is computed. If d(tu, t) < r − rc, all the clusters worth con-
sidering have to lie inside the node’s ball and the subsequent
siblings of the node may be discarded. If d(tu, t) > r+rc the
clusters have to lie outside and the node u may be discarded.
In the other cases the node and the subsequent siblings have
to be considered. The search is then performed recursively
in all nodes, that may contain t.

For a cluster C being inserted into a node representing
a ball with radius r, if there exists at least one child node
representing a ball containing the center of C, C is recur-
sively inserted into the first such child. Otherwise, a new
child holding C with radius r/2 and a center corresponding
to the center of C is created and appended to the list of
child nodes.

After having processed all transformations, the clusters
are sorted according to their weights. The clusters with the
highest weights provide the candidate transformations. The
number of candidate transformations may be chosen as a
constant or we may consider the clusters with weight up to
a certain fraction of the maximum weight.

Properties of the tree.Since the number n of samples is
finite, the considered transformation space Ti is bounded,
i.e. ∃ri ∈ IR : ∀x, y ∈ Ti : d(x, y) < ri. A subset Ci ⊂ Ti is
called an ε-packing if and only if ∀x, y ∈ Ci : d(x, y) > 2ε.
The size of the largest ε-packing is called the packing number

P (Ti, ε). For ε → 0, P (Ti, ε) = O
((

ri
ε

)D)
for D being

the dimension of the space [6]. Therefore the maximum
number of balls of radius ri/2 with centers in Ti such that no
center is contained in another ball, is in O(2D). This means
that the number of children a node of the tree may have
is bounded by a constant only depending on the dimension
of the transformation space. The depth of tree is at most
dlg(r0/rc)e.

3. THE SIMILARITY FUNCTION
After some candidate transformations have been found,

a distance or similarity measure has to be applied to rate
the similarity of the two matched shapes. Most of the exist-
ing distance measures are either not applicable to the sets
of polygonal curves (like Fréchet distance or turning angle
function) or are maximum based distances (like Hausdorff
distance) and therefore are too sensitive to noise. We de-
scribe a new similarity measure which averages over the
whole set of polylines, so it is not sensitive to noise, but
looses the property of being a metric. It takes into account
special properties of line segments, and is invariant to dif-
ferent parameterizations or splitting of polylines.

The resemblance function is defined for every point of the
polylines and stands for how good the point is represented
by the other set. It is composed of the point’s distance to
the points of the other shape and of the similarity of slopes.

Let h be a straight line segment of the first set S1 with
endpoints p0 and p0+v, and g a segment of the second set S2

with endpoints q1, q2. Let h′ and g′ denote the supporting
lines of the segments h and g respectively. For a point p ∈ h
we define the distance to g as the distance to a point q on
g, such that the orthogonal projection of q on h is exactly
p, if such a point q exists. Otherwise, if p′ is the nearest
orthogonal projection of an endpoint of g on h′, the the
distance from p to g is defined as the distance from p to
p′ plus the distance from p′ to the corresponding endpoint

536



of g. Formally, consider a parameterization of h′: p(λ) =
p0 + λ · v, λ ∈ R. Let q(λ) denote a point on g′, such that
p(λ) is an orthogonal projection to h′ of q(λ). Further, let
p1 = p0 + λ1 · v and p2 = p0 + λ2 · v denote projections of
the endpoints q1 and q2 on h′, and w.l.o.g., let λ1 < λ2, see
Figure 4 for an illustration. The distance function is then
defined as

δh,g(λ) =


‖p1 − q1‖+ ‖p(λ)− p1‖, 0 ≤ λ < λ1

‖p(λ)− q(λ)‖, λ1 ≤ λ ≤ λ2

‖p2 − q2‖+ ‖p(λ)− p2‖, λ2 < λ ≤ 1

p2
h′

g

h

q2

q(λ)

p1 p(λ) p0 + v

q1

g′

p0 = p(λ1)
= p(λ2)

Figure 4: Definition of the distance between two line
segments

This definition of the distance (unlike the Euclidean dis-
tance) ensures that the function δh,g(λ) is piecewise linear,
which allows for a fast computation of the resemblance func-
tion.

If the distance of a point p ∈ h and the segment g equals
zero, that is, p lies on g, then we say that p is exactly repre-
sented by g – the degree of being represented, therefore, is
1. The greater the distance gets, the lesser p is represented
by g. The decrease in similarity is weighted with the size of
the shape S1. In [13] an inverse distance function is used
in a similar context for the rating of transformations in an
optimization problem. For their task they chose a function
that exponentially decreases with higher Euclidean distance
to value the correspondence of features (see Figure 5(a)).

In the present case the goal is not to find an optimum, but
to rate a given configuration. Small deviations in the posi-
tion of the features of the two sets should not result in an
excessive decrease in similarity function. Therefore an inver-
sion function with a high (negative) slope around the y-axis
is inapplicable. The function α′h,g(λ) = exp(25(δh,g(λ)/DS1)

2),
where DS1 denotes the diameter of the shape S1, seems more
promising. It rates pairs with a distance less than 5 % of the
diameter very high (over 0.9) and with a distance of more
than 25 % of the diameter very low – around 0.2 (see Fig-
ure 5(b)). To make the computation easier, the piecewise
quadratic function

αh,g(λ) = max(1− 25

(
δh,g(λ)

DS1

)2

, 0)

is chosen. It has the same characteristics for small distances
(up to 10 %) but decreases faster for greater distances (see
Figure 5(c)).

The resemblance of two line segments also depends on
their slopes. Line segments with similar slopes should get a
higher resemblance value, so a slope factor βh,g is defined as

βh,g = cos (∠(h, g))4

(a) (b) (c)

Figure 5: (a) exponentially decreasing inverse dis-
tance; (b) inversion function α′; (c) inverse distance
function α

It rates pairs with a difference in slopes of less than 10◦ very
high (over 0.9) and with a difference of more than 45◦ very
low (below 0.25). The exponent 4 was chosen experimen-
tally.

The resemblance function φh for a line segment h is de-
fined as a combination of inverse distance function and slope
rate:

φh(λ) = max
g∈S2

(αh,g(λ) · βh,g) (1)

In applications that follow human perception, parts with
many parallel line segments have to be prevented from dom-
inating over parts with solitary line segments. Therefore a
weight function ω is defined analogously to the resemblance
function. It rates the density of similar line segments of an
image. For a line segment h ∈ S1 it is defined as

ωh(λ) =
1∑

g∈S1
(αh,g(λ) · βh,g)

(2)

Note that the weight function rates the similarity of a seg-
ment h to the other segments in the same set.

The directed resemblance measure for two sets of line seg-
ments Φ→(S1, S2) is defined as a weighted mean over all
points of the shape S1:

Φ→(S1, S2) =

∑
h∈S1

(∫ 1

λ=0
φh(λ) · ωh(λ) dλ · lh

)
Ω(S1)

, (3)

with lh being the length of h and Ω(S1) being the total

weight of S1: Ω(S1) =
∑

h∈S1

(∫ 1

λ=0
ωh(λ) dλ · lh

)
.

The undirected resemblance measure Φ(S1, S2) is defined
as the weighted arithmetic mean:

Φ(S1, S2) =
Φ→(S1, S2) · Ω(S1) + Φ→(S2, S1) · Ω(S2)

Ω(S1) + Ω(S2)
. (4)

From this resemblance measure a deviation or distance mea-
sure may be derived, but of course this will never be a metric
as the triangle inequality does not hold.

Computational complexity.The resemblance value is com-
puted evaluating the integrals of a combination of the resem-
blance function and the weighting function for every line
segment. For two sets with n line segments each, the resem-
blance function – as defined in Equation (1) – for a single
line segment is the upper envelope of at most 4 ·n + 1 regu-
lar (partially defined) functions. Using quadratic functions,
each pair intersects at most 2 times (unless equal). Accord-
ing to the upper bound on the length of Davenport-Schinzel
sequences [1] the complexity of the upper envelope of the
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4 · n + 1 functions is bounded by O(n · 2α(n)) with α being
the inverse Ackermann function.

The weighting function for a single line segment – as de-
fined in Equation (2) – is the sum of n functions, each one
split into at most 4 regular pieces. The number of intervals
for the sum is at most 3n + 1. So the overall complexity for
all the line segments is bounded by O(n2 · 2α(n)).

3.1 Partial similarity function
For the complete-complete matching resemblance function

as defined in Equation (4) we took a weighted combination of
two one-sided resemblance values. Note that the definition
of the directed resemblance function (Equation (3)) applied
to the complete shapes S1 and S2 gives us a score of how
good the complete shape S1 is matched to shape S2 and,
therefore, a score for the complete-partial matching.

For partial-partial matching we keep for each cluster a
record of which parts of the shapes contribute to the trans-
formations contained in this cluster. Let C be a cluster and
SC

1 ⊂ S1 and SC
2 ⊂ S2 are the parts of the shapes that

contributed to the transformations in C. Then, we compute
the resemblances for the matched parts: s1 = Φ→(SC

1 , SC
2 )

and s2 = Φ→(SC
2 , SC

1 ). These values waive the remaining
parts S1

SC
1 and S2

SC
2 of the shapes completely, so in general the highest val-

ues would be achieved by clusters matching very small parts
perfectly.

The size of the matched parts also has to affect the value
of partial similarity. Therefore, we compute a ratio of the

matched parts as ρ1 =
|SC

1 |
|S1|

and ρ2 =
|SC

2 |
|S2|

respectively

where |Si| denotes the total length of the polylines of the
shape Si and

∣∣SC
i

∣∣ denotes the length of the parts matched
contributing to the cluster C. A weight factor fi = 1− (1−
ρi)

k (see Figure 6) if defined, where k is a (user-defined)
parameter; the default value of k in our implementation is
3. The maximum of two weight factors f∗ = max(f1, f2) is
then used to adjust the resemblance value: s∗ = f∗ s1+s2

2
.

The choice of the factor function was motivated by the fol-
lowing consideration: if large parts of at least one shape are
matched, we want to leave the resemblance value almost un-
changed, and give larger penalties the smaller the matched
parts get. With the parameter k the user can control these
penalties. If k is large, the resemblance value stays almost
unchanged even for small parts, whereas for small values of
k the quality of match decreases with the relative size of
matched parts.

4. EXPERIMENTAL RESULTS
We implemented the matching algorithms and the resem-

blance measure as an automated application that finds the
best resemblance value for every pair of shapes from a given
set of shapes. The “CE-Shape-1” part B dataset from the
MPEG-7 shape silhouette database was used as test data.
It consists of 1400 (mostly) silhouette images, subdivided
into 70 classes containing 20 related images each. From the
images the outer closed contours were extracted. The poly-
lines for which every vertex corresponds to a pixel, were then
simplified using the Douglas-Peucker algorithm [7].

The resemblance of the shapes was tested under similarity
transformations including reflections. To avoid unnecessar-
ily many unsuccessful attempts, the shapes were scaled in

if k is large, the resemblance value stays almost unchanged even for small

parts, whereas for small values of k the quality of match decreases with the

relative size of matched parts.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

k = 1
k = 2
k = 3
k = 5

k = 80

Fig. 6. Weight factor function parameterized by k.

4 Experimental results

We implemented the matching algorithms and the resemblance measure as an

automated application that finds the best resemblance value for every pair of

shapes from a given set of shapes. The “CE-Shape-1” part B dataset from the

MPEG-7 shape silhouette database was used as test data. It consists of 1400

(mostly) silhouette images, subdivided into 70 classes containing 20 related

images each. From the images the outer closed contours were extracted. The

polylines for which every vertex corresponds to a pixel, were then simplified

using the Douglas-Peucker algorithm [14].

The resemblance of the shapes was tested under similarity transformations

24

Figure 6: Weight factor function parameterized
by k.

advance so that their bounding boxes had the same diam-
eter. The whole comparing process was done repeatedly, 3
times with the original (pre-scaled) shape and 3 times with
one shape flipped to incorporate reflections. As result of the
comparison of two shapes the highest resemblance value en-
countered for any of the candidate transformations and for
any of the iterations was taken.

Every shape was compared to all the 1400 shapes of the
set, including itself, and the nearest neighbors, that is shapes
with highest resemblance value, were determined. The per-
formance was rated based on three values:
True Positives as Nearest Neighbors: the ratio of shapes
from the same class found as consecutive first nearest neigh-
bors. The average for all the 1400 shapes was 67.78%.
True Positives in Class Size: the ratio of shapes from the
same class found among the 20 nearest neighbors. The av-
erage for all the 1400 shapes was 76.89%.
True Positives in Double the Class Size: the ratio of shapes
from the same class found among the 40 nearest neighbors,
the so called bull’s eye performance. The average for all the
1400 shapes was 84.28%. The best bull’s eye performance
of 84.33% on the MPEG-7 shape silhouette database was
reported by Attalla and Siy in [4].
Our algorithm is also integrated into sidestep, a system
for evaluation of shape-based retrieval algorithms, which is
described in [15].

We also evaluated our system using a collection of 10 745
abstract images from the UK Trade Marks Registry and a
set of 24 image queries. This is the same test set as was
used for the evaluation of the Artisan system as reported
in [8]. The set of relevant images for each query was se-
lected by experienced trademark examiners and was used as
a benchmark for the system evaluation.

We evaluated the performance of our system on the trade-
mark image set according to the performance measures used
in [8]: normalized recall Rn, normalized precision Pn and
normalized last place Ln, which are defines as

Rn = 1−
∑n

i=1 Ri −
∑n

i=1 i

n(N − n)

Pn = 1−
∑n

i=1(log Ri)−
∑n

i=1(log i)

log
(

N !
(N−n)!n!

)
Ln = 1− Rl − n

N − n
,
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where n is the total number of the relevant images, N is the
size of the whole collection, Ri is the rank at which relevant
image i is actually retrieved, and Rl is the rank at which the
last relevant image is retrieved. All three measures rank a
system’s retrieval performance in response to a query from 0
to 1, with 1 meaning perfect retrieval. The major difference
between normalized recall and precision is that normalized
recall gives higher weighting to success in retrieving the first
few items, while normalized precision gives equal weighting
to all retrievals. The last place ranking indicates the number
of retrieved items a user has to search in order to have a
reasonable expectation of finding all relevant items. This
measure is useful for applications requiring an exhaustive
search, for example trademark retrieval.

The performance achieved by our system on the trade-
mark test set is: normalized recall of 0.93, normalized preci-
sion of 0.71, normalized last place of 0.68. The early imple-
mentation of the Artisan system (which is regarded as one
of the most comprehensive trademark retrieval systems in
the current literature [9]) had the values of 0.90, 0.63, and
0.56, respectively.

The experiments show that the algorithm is robust with
respect to noise and to differences in the representation of
the shapes. However, apart from the good results achieved,
we recognized some cases – especially among the trademark
images – that are problematic for our approach:

• frames
If the important part of a trademark image is sur-
rounded by some kind of a simple frame, most humans
do not pay much attention to that frame. The simi-
larity measure however is influenced by it, because the
frames naturally are larger than the part contained in
it. To tackle this problem by using the partial-partial
matching variant may result in high similarity values
for completely different logos just because the frames
are identical.

• spatially independent parts
Comparing two images, that consist of two or more
spatially independent parts and the corresponding parts
are similar but arranged in slightly different ways, most
humans do not care about the differences. However,
there exists no affine map that aligns all parts properly
at the same time.

To overcome these problems will be part of our future work.
We think the results achieved on both test sets are highly

encouraging. They indicate that our method is a general
purpose matching technique, not limited to contour shapes,
but also performs well on complex shapes within the context
of the non-trivial task of trademark image retrieval.

5. CONCLUSIONS
In this paper we presented a shape matching algorithm

that randomly selects a point sample in each shape and gives
a vote to a transformation which maps one random sample
to the other minimizing the squared distances between the
corresponding points. Instead of selecting a minimum size
sample for the given class of transformations, as is usual in
voting based methods, we extend the samples until the whole
data is incorporated or the samples are no longer consistent.
The transformation matching the sample sequences is then
weighted according to the quality of match and the size of

the samples. After sufficient number of random experiments
the weighted votes in transformation space are clustered and
the clusters with high total weight are taken as candidate
transformations.

The second part of our method is similarity evaluation.
Each candidate transformation is applied to one shape and
the resemblance of the two shapes is rated according to the
distance between the points of two shapes and to the sim-
ilarity in slopes of the straight line segments contained in
the shapes. We also define complete-partial similarity vari-
ant of our resemblance function, which reflects how similar
the complete shape S1 is to some parts of the shape S2, and
a partial-partial similarity variant, i.e., how good a part of
shape S1 matches some part of shape S2.

We applied the implementation of our algorithms to the
“CE-Shape-1” part B dataset from the MPEG-7 shape sil-
houette database, and to a test collection of 10 745 trade
mark images provided by the UK Trade Marks Registry with
a set of 24 image queries, both with convincing results.

The challenges mentioned in section 4 may be tackled by
dividing the images into meaningful parts, weighting them,
and applying the matching and similarity evaluation as pre-
sented in this paper to this parts.
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