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ABSTRACT 

In this paper, we develop a system to classify the outputs of image 
segmentation algorithms as perceptually relevant or perceptually 
irrelevant with respect to human perception. The work is aimed at 
figurative images.  We previously investigated human visual 
perception of trademark images and established a body of ground 
truth data in the form of trademark images and their respective 
human segmentations.  The work indicated that there is a core set 
of segmentations for each image that people perceive. Here we 
use this core set of segmentations to train a classifier to classify 
closed shapes output from an image segmentation algorithm so 
that the method returns the image segments that match those 
produced by people.  We demonstrate that a perceptual relevance 
classifier is attainable and identify a good methodology to achieve 
this.  The paper compares MLP, SVM, Bayes and regression 
classifiers for classifying shapes.  MLPs perform best with an 
overall accuracy of 96.4%. 

Categories and Subject Descriptors 

I.5.4 [Pattern Recognition] Applications - Computer vision I.5.1 

[Pattern Recognition] Models - Neural nets, Statistical I.2.10 

[Artificial Intelligence] Vision and Scene Understanding -
Perceptual reasoning, Representations, data structures, and 

transforms, Shape I.4.6 [Image Processing And Computer 

Vision] Segmentation - Edge and feature detection I.4.7 [Image 

Processing And Computer Vision] Feature Measurement -- 
Feature representation, Invariants, Moments, Size and shape.  

General Terms 

Performance, Experimentation, Human Factors, Verification. 

Keywords 

Perceptual relevance, classification, image segmentation, 
perceptual classifier, human image segmentation. 

1. INTRODUCTION 
There has recently been tremendous growth in the storage of 
digital imagery producing a need for accurate and fast indexing 

and retrieval systems. Examples of applications include archiving 
images or photographs, medical image analysis and trademark 
retrieval.  In Content-based Image Retrieval (CBIR) the aim is to 
retrieve images form an image database that are similar to a query 
image.  This process may be performed by matching the whole 
image as a single entity or matching components within each 
image [8].  In this work, we focus on component-based similarity 
matching of trademark images. 

Our work forms part of the PROFI (Perceptually-Relevant 
Retrieval of Figurative Images) project [See section 6].  In 
PROFI, we aim to develop new techniques for the retrieval of 
figurative images (i.e. abstract trademarks and logos) from large 
databases and, in particular, aim to reproduce the matches that 
people find by manual methods on this task. The techniques are 
based on the extraction of perceptually relevant shape features and 
the matching of these features in the target image against features 
in the stored images.  The first stage of this procedure is to 
identify the components present within an image. As our aim is to 
return the images from the automated system that people would 
say were similar, we believe that this segmentation process should 
reflect human perception and segmentation. The principal 
difficulty for image segmentation algorithms in the context of our 
work is the selection of parts that accurately reflect the image's 
appearance to a human observer. 

To obtain a base line for the human performance on the task, we 
have previously conducted a set of experiments investigating 
human segmentation of trademark images [10,11].  The 
experimental results detailed in the two papers and outlined in 
section 2 concur with previous investigations such as [17] in that 
human image segmentation appears to follow a set of perceptual 
principles analogous to the Gestalt laws [15,25].  The experiments 
and analyses show that these Gestalt laws interact and possibly 
conflict as noted by [6].  The experiments also indicate that there 
are a core set of segmentations for each image perceived by two or 
more people along with a set of segmentations seen only by 
individuals.  This core set of segmentations forms the ground truth 
for our evaluations into inducing a perceptual relevance classifier.  
It is vital for any computerised image segmentation algorithm to 
include a perceptual relevance classifier, effectively a global 
goodness score.  This allows the algorithm to reduce the number 
of segmentations output and to focus on perceptually relevant 
shapes whilst, hopefully, discarding irrelevant segmentations. 

The first stage is to identify the shapes present in an image.  To do 
this we require a shape identification algorithm.  In practice any 
closed shape identifier could underpin the procedure, such as 
region growing [28], watershed [2] or closed shape identification 
[1] provided the result of the algorithm may be represented by a 
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list of boundary points to calculate the attributes used here.  It is 
the classification process where we focus our research here, not 
the underlying shape identification algorithm. We use Saund’s 
closed shape identification algorithm [22] here.  It was developed 
for the sketch retrieval domain to identify shapes within human 
sketches but is equally applicable to the trademark retrieval 
domain.  It aims to find closed shapes satisfying global criteria 
and has similarities to our aim of classifying perceptual relevance. 

We aim to use our previous empirical evaluations of human 
perception to induce a classifier that classifies the closed shapes 
output by a closed shape identification algorithm as perceptually 
relevant (to keep) or perceptually irrelevant (to discard). This 
would effectively replace the global goodness measure used in 
Saund’s method.  To do this we require a set of attributes to 
represent each shape as a vector and a classifier to classify the 
shapes output for relevance.   

To decide which attributes to use, this work takes its cue from the 
attributes elicited by Alwis [1], Chan & King [4], ARTISAN [8] 
and QBIC [9].  Alwis [1] has produced a trademark retrieval 
system, with many similarities to the work here, so the features he 
used are particularly relevant for the work here: circularity, aspect 
ratio, stuffedness, “right angledness”, sharpness, complexity, 
directness and straightness.  Chan & King [4] propose a method 
for feature weight assignment in a trademark system.  They use 
invariant moments, Euler number, eccentricity, and circularity in 
their evaluations.  ARTISAN [8] is “regarded as one of the most 
comprehensive trademark retrieval systems in the current 
literature” [13].  ARTISAN uses component-based matching so 
the features used by ARTISAN should be relevant: aspect ratio, 
circularity, convexity, the Fourier descriptors, the shape’s area 
and the three ‘natural’ shape measures defined by Rosin [18]: 
rectangularity, triangularity and ellipticity for trademark retrieval. 
The IBM QBIC [9] system is one of the most ubiquitous image 
retrieval systems developed and has been used widely so the 
features used for matching should be relevant to our 
developmental system.  The shape features used in QBIC consist 
of shape area, circularity, eccentricity and a set of algebraic 
moment invariants.  

In this work, we analyse a series of common classifiers to verify 
that it is possible to classify perceptual relevance using human 
classifications and to pinpoint the classifier that achieves the 
highest recall accuracy while maintaining recall consistency.  We 
assess four supervised learning classifiers: Naïve Bayes [14], 
Multi-Layer Perceptron (MLP) [19], Support Vector Machine 
(SVM) [24] and Regression [20].  Naïve Bayes is a simple 
statistical model linear classifier that often outperforms more 
sophisticated classifiers [26].  Standard regression is a statistical 
model linear classifier aimed at classification with numeric 
attributes such as we use here.  Non-linear statistical model 
classifiers such as the MLP or SVM can model non-linear class 
boundaries and are usually robust to outliers in the data.  These 
four classifiers together thus provide a broad cross-section of 
classifier technology. 

In the remainder of this paper, we describe: our previous human 
segmentation experiments, the underlying closed shape 
identification algorithm that we used for our analyses, the 23 
attributes used to represent each closed shape, the data used to 
perform our classification analyses, the four classifiers we have 

evaluated for recall accuracy, the methodology we use for our 
evaluations, the results, analyses and conclusion inferred. 

2. HUMAN PERCEPTION ANALYSES 
To test the system, it has been necessary to collect ground truth 
data from human subjects on how individuals segment images – 
thus asking the question: “what are the human segmentation 
preferences?” The following explains how we collected this data 
and summarises the work published in [10,11]. 

In our human perception experiments, 53 subjects each received 

32 trademark like images in a booklet.  The subjects were 
requested to draw (using pen or pencil) their perceived 
segmentations of each image in turn on to the booklet. We 
collated the segmentations drawn by the subjects and produced a 
listing of all segmentations for each image in turn.  For our work 
here, we only consider segmentations seen by 2 or more people 
which represent our core set of segmentations that the trademark 
system should output to represent each image. 

Table 1 shows an example image and the human segmentations 
perceived for that image. The human subjects perceived four 
different segmentations – they comprised the following number of 
components (shapes): 5, 2, 3 and 1 components respectively.  We 
identify these as the perceptually relevant components (shapes) 
for this image which the closed shape identification algorithm 
should ideally identify. 

Table 1 Table showing an image (top row) and the four 

segmentations seen by 2 or more people for that image. 

 

 

 

 

 

  

 

3. CLOSED SHAPE IDENTIFICATION. 
To identify the closed shapes in the image, we use Saund’s 
method as pointed out above. This method requires an underlying 
algorithm to identify line segments in an image and the 
relationships between those line segments.  Therefore, we initially 
find the edges in an image and subdivide these into constant 
curvature segments using the Sarkar & Boyer [21] edge detection 
algorithm and the Wuescher & Boyer [26] curve segmentation 
algorithm. These methods were selected as they had successfully 
been used in the trademark system developed by Alwis [1]. The 
Sarkar & Boyer method finds the edge lines in an image and splits 
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these lines into primitives. Wuescher & Boyer performs some 
aggregation of these primitives into more perceptually-oriented 
constant curvature segments and outputs these as a list of constant 
curvature segments.  These segments provide the building blocks 
for our closed shape identifier.  Our aim is to group these constant 
curvature segments using Gestalt like methods to produce a graph 
of segment relations which will underpin the Saund closed shape 
identification algorithm. To produce this graph we use the 
following methods. Each constant curvature segment becomes a 
node in the graph with two ends (first point (denoted as an x, y 
coordinate) and last point (also denoted as an x, y coordinate)).  
We find all segments that are end-point proximal.  We use Lowe’s 
method [16] to extract endpoint proximity by comparing two lines 
with lengths l1 and l2 or curves with perimeter lengths l1 and l2.  In 
the following, (l=l1 if l1<l2 else l=l2).  The distance between their 
endpoints is r.  The inverse significance of endpoint proximity 

between them is
2

2

l

r ρ
.  The parameter ρ is a unit-less constant and 

may effectively be ignored (i.e. set to 1).  So if: threshold
2

2

<
l

r  

where threshold = 0.01 then the two endpoints are joined.  This 
effectively joins the graph by linking the proximal end-points.   

The Saund algorithm overlays this and focuses on managing the 
search of possible path continuations through the graph 
particularly where the graph nodes represent junctions 
(crossroads, t-junctions etc) of lines in the original image.  The 
search is managed through the use of local criteria for prioritising 
the order in which paths are pursued.  Saund has identified criteria 
(scores) for ranking possible paths through junctions based on 
observations.  Path scores accumulate by multiplying junction 
preference scores as the path progresses. 

The closed path search commences from each end (first and last) 
of each node (line segment) identified by the underlying 
Wuescher & Boyer algorithm. For each end (first then last) in 
turn, all possible paths are followed.   This effectively forms a 
search tree with paths through the tree representing the paths of 
candidate shapes.  As each leaf node in the tree is expanded, any 
new child nodes are compared with child nodes in the opposite 
side of the tree.  If they are end-point proximal then a closed path 
has been identified and its nodes and pixels are added to the list of 
candidate paths. All closed paths exceeding a threshold score are 
thus stored as candidate paths.  Saund terminates searching when 
a closed path score exceeds a pre-specified threshold.  Saund 
accepts a closed path as a candidate if its cumulative junction 
score exceeds 0.6 or accepts the closed path and terminates search 
from the particular root node if the score exceeds 0.9.  We do not 
terminate search if the score exceeds this threshold as we feel 
potential closed paths may be missed due to higher scoring and 
shorter paths terminating the search prematurely.  Hence, all paths 
that exceed 0.6 are accepted as candidates but search continues.   

Saund discards closed paths that are subsumed by other closed 
paths with higher scores.  Hence, each new closed path is 
compared to all existing stored paths.  If the new path is a subset 
(including the equivalence set) of an existing path but has lower 
score then the new path is discarded.  If the new path has higher 
score than the existing saved path then the saved path is 
discarded.  

3.1 Determining Good Shapes 
In Saund’s methodology, all paths accepted as candidates are then 
assessed for global figure goodness by awarding a score. In 
Saund’s approach the score for each closed path is produced 
multiplicatively (C*N*E) where C, N and E are: 

Compactness (C) - the ratio of [figure area: area of convex hull]. 

End-point distance (E) - calculated using 1 – de/p where de is the 
distance between endpoints of the path and p the path length. 

Non-end-nearest-approach (N) which penalises paths where an 
endpoint terminates near the body of the path.   

This method does not produce the perceptually relevant closed 
figures identified by our experiments. This is where our work has 
changed the method: by adding a perceptual classifier taught 
using the data from human experiments. Through a brief 
comparison, we identified that, of the three Saund attributes, only 
C (which we call areaScore) matches to some extent the human 
preferences from our experiments. 

The output of our implementation of the Saund algorithm is 
therefore a list of candidate closed shapes found in the image.  
These closed shapes are the candidate shapes whose cumulative 
junction score exceeds 0.6.  Each candidate shape is classified as 
relevant or irrelevant using our perceptual classifier and only 
shapes classified as relevant will be retained for further 
processing.  The candidate closed shapes are represented by a list 
of x, y coordinates representing each point on the shape’s 
boundary (in order with no gaps).  Two example images with one 
relevant shape and one irrelevant shape identified by our 
implementation are shown in Table 2.  The classifier should 
classify the relevant shapes as relevant and the irrelevant shapes 
as irrelevant thus slowing us to discard the irrelevant shapes from 
any further processing. 

Table 2 Table listing 2 images (leftmost column) and two paths 

identified by the Saund algorithm for each image (one 

perceptually relevant (middle column) and one perceptually 

irrelevant (right column)). 

 
  

 

 

 

 

 

 

3.2 Attributes 
As outlined above, we use a classifier to determine which closed 
figures output from our implementation of the Saund algorithm 
are perceptually relevant. The classifier has to be trained on the 
data collected from our ground truth experiments described in 
Section 2. The selection of the attributes for the classifier is 
considered as follows.   
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Each output is a list of boundary points (x, y coordinates) of each 
closed shape.  We produce various attributes from the boundary 
points thus representing each closed shape as a vector of 24 
attributes:  23 attributes calculated from the list of boundary 
points (x, y coordinates) plus the class (perceptually relevant or 
irrelevant).  Note that the 23 attributes are not independent of 
each other; many are closely related such as AreaRatio and 
Roughness; it is the job of the classifier to determine the optimum 
set of attributes. The following attributes are calculated: 

Roughness = Perimeter / Convex Hull Perimeter 

AspectRatio = Perimeter / Min. Area Bounding Box Perimeter  

Stuffedness = Area / Min. Bounding Box Area  

AreaRatio = Area / Convex Hull Area  

GapScore = Max. Gap in Perimeter / Perimeter 

Circularity = 4π* Area / Perimeter2 

Eccentricity = ( )
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3.3 Data Preparation 
To allow the system to classify the data from these attributes, we 
first collected a set of data from the ground truth images. All 
images from the experimental set of 84 images [10,11] which 
contained texture were discarded as texture confuses shape 
identifiers and produces very poor segmentation results.  The 
underlying line segmentation algorithm finds a large number of 
edges in texture data.  To do this we discarded all images that 
produced more than 500 shapes as this is too many to process by 
hand.  This left 48 images.  

Our experiments indicated that there are a core set of 
segmentations for each image perceived by 2 or more people.  
From the chosen 48 images, we ran the closed shape identifier 
(described in section 3) and selected (by hand) shapes output by 
this algorithm that were perceptually relevant (matched shapes 
within the segmentation drawn by 2 or more human subjects) and 
shapes that were perceptually irrelevant (very dissimilar from the 
shapes drawn by the human subjects). We tried to balance the 
number of relevant with the number of irrelevant examples from 
each image although this is not always possible.   

We note that for our analyses here, it is important to choose 
relevance/irrelevance carefully.  We are representing the global 
picture; one shape that is relevant for one image may in fact be 
irrelevant for another similar image containing that shape as 
shown in figure 2.  We took this into account when preparing our 
training/test sets for the classifiers and only selected shapes that 
were perceptually irrelevant across the board.  The final classifier 
is a global classifier; it is not trained on a per image basis so we 
need the global relevance picture which needs careful 
consideration. 

From the 48 images available, we used 29 images to produce an 
original training set comprising 435 records and 19 images to 
produce an original test set comprising 306 records giving a total 
data set size of 741 records. This represents all of the data we had 

available. We labelled these two data sets: set1 and set2 
respectively.  We then extracted the top half of the training set1 

and the top half of the test set2 to produce set3 comprising 371 
records.  When splitting the data sets in half, we ensured that all 
records from a particular image were kept together in one half or 

the other. Set4 which contains 370 records is the bottom half of 

the training set1 and the bottom half of the test set2.  Set5 
comprises 365 records and is the top half of the training set1 and 
the bottom half of the test set2 and finally we merged the bottom 
half of the training set1 and the top half of the test set2 to produce 

set6 with 376 records.  This subdivision allows us 6 runs of each 
classifier with a training set and a test set.  In these analyses, 
standard x-fold cross validation is not feasible as the data set 
contains images that are variants of other images (altered 
according to Gestalt principles) so the constituents of the test and 
training sets must be considered carefully to prevent biasing and 
instability and we tried to prevent this by splitting the sets 
carefully.  Also, we cannot split the records for each image, for 
example if image 1 produced 10 relevant and 10 irrelevant shapes 
then these must all be kept together in one set to prevent biasing 

 

 

 

 

 

 

Shape Image 1 

Shape is irrelevant 

Image 2 

Shape is relevant 

Figure 1. The leftmost shape (two interlocking loops) is 

relevant for the rightmost image but irrelevant for the 

middle image. 
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of the data.  We are searching for a classifier that generalises well 
so all equivalent data must be together but image variants may be 
split in a considered way. 

3.4 Classifiers 
In the work we assess four classifiers to select the perceptually 
relevant and irrelevant shapes from the images, these are Naïve 
Bayes [14], MLP [19], SVM [24] and Regression [20]. These 
were selected as the most common methods used currently. The 
work aims to pinpoint the best (highest recall coupled with 
highest recall consistency) classifier for classifying the outputs of 
the segmentation algorithm. The Naïve Bayes does not require 
parameter setting so we do not tune that algorithm. We ran 
various configurations (as outlined below) of the MLP and SVM 
algorithm on all 6 train/test set combinations and selected the 
configuration for each classifier with the highest recall. All 
classifiers use identical sets and are free to choose any attributes 
from each training set in turn.  The relatively small size of the data 
prevents us using train and validation sets prior to classifying a 
blind test set.  The regression algorithm does allow tuning but is 
slow to run (up to 1 day) with some configurations.  For this 
algorithm, we ran some initial analyses and selected the best 
performing (highest recall accuracy) configuration when 
classifying the train set (set1) only. 

Naïve Bayes assumes that the attributes X= {x1, x2, x3, ..., xd} are 
independent to simplify the classification task by allowing the 
class conditional densities p(xk | Cj) to be calculated separately for 
each attribute. This assumption appears not to affect the posterior 
probabilities greatly, especially in areas near decision boundaries, 
thus, leaving the classification task unaffected.  We use the Naïve 
Bayes C source code available from [3] running under Linux.   

The MLP neural network is a feed forward topology with a single 
hidden layer comprising 23 input neurons, a hidden layer of 
neurons and a single output neuron.  We have 23 neurons in the 
input as there are 23 attributes in the input data and a single 
output neuron to represent perceptual relevance for these analyses. 
Selecting the number of hidden neurons is important.  We tried 
various settings to choose the optimal configuration of the MLP.  
We selected between 3 to 12 hidden neurons and ran each MLP 
on each of the 6 train/test set combinations (60 runs in total).  An 
MLP with 4 hidden neurons produced the highest recall.  We then 
ran the 4 hidden neurons MLP for between 1000 and 7000 
epochs. The MLP recall percentage increases from 1000 to 2000 
to 3000 training epochs. However, with 4000 epochs, recall 
accuracy degrades markedly and remains worse for both 5000 and 
7000 epochs which indicates overtraining.  Thus, 3000 epochs 
produced the best results coupled with 4 neurons in the middle 
(hidden) layer.  Multi-layer networks use a variety of learning 
techniques; we use back-propagation where the output values are 
compared with the correct answer during network training to 
compute the value of the error-function.  In our analyses here, we 
use the MLP C source code available from [3] running under 
Linux.   

For the SVM, we use C++ source code (LibSVM) available from 
[5] running under Linux.  We use the nu-SVC SVM type (where 
nu is related to the ratio of support vectors and the ratio of the 
training error) with radial basis function kernels (exp(-γ*| xj – z 

|2). All data attributes are scaled in the range [0, 1]. We used the 
script available with libSVM (grid.py) to select values for γ in the 

kernel function.  This recommended 1.0, 0.125 and 0.0625.  We 
then ran the SVM on the 6 train/test set combinations with each of 
these three γ settings along with 0.5 and 0.25.  A setting of 0.125 
produced the highest overall recall.  With γ set to 0.125 we tried 
various nu-values (0.1, 0.3, 0.4, 0.5 (default) and 0.6).  0.4 
produced the highest recall figure. 

For the regression analyses, we use the Sagata regression program 
available from [20] which provides proprietary regression 
algorithms.  It runs under MS Windows XP and sits on top of MS 
Excel. Our preliminary analyses which involved generating the 
regression equation using the training set1 and then classifying 
the same training set1 indicated that the combination of selecting 
an initial set of attributes using the MinPress regression algorithm 
with default settings then using standard stepwise with order up to 
2 attributes followed by Least Squares regression to select the 
equation coefficients produced the highest recall. 

MinPress is similar to stepwise regression except that attributes 
are selected based on improvements in the Press statistic defined 
as: 

PRESS = Σi=1,...,n wi[yi - y(i)•est(xi)]
2  where y(i) •est(xi) is the 

prediction at the data point xi.  Inputs, classes, and weights for 
the xi-th record are omitted.  The same model is fitted to the data 
minus the xi-th record.  This fitted model is used to make a 

prediction for xi. This is y(i) •est(xi). 

Once we have used MinPress to select an initial set {S1}, we 
supplement this set with a set of 2nd order attributes {S2} selected 
using standard stepwise regression [20]. 

We merge {S1} and {S2} giving the selected attributes {S}.  We 
use Least Squares estimation (LSE) to select the regression 
equation coefficients: LSE derives the regression equation 
coefficients that minimize the sum of squared differences 
(residuals) between the regression equation predictions and the 
corresponding actual response (class) values (0 or 1 here).  

3.5 Method 
The SVM and Naïve Bayes are discrete classifiers; each record is 
classified as relevant or irrelevant so we use the classes {0, 1}.  In 
contrast, the regression algorithm and MLP produce continuous 
classifications in the range [0, 1].  For classification (testing), we 
use a threshold value of 0.5 for the regression and MLP outputs.  
If the predicted output class score is >0.5 then the record is 
classified as relevant but if the output score value is <= 0.5 then 
we classify as irrelevant. 

Each classifier is trained and tested with one pair of sets in turn 
and the outputs stored for recall accuracy calculation.  Each 
classifier produces 6 separate equations/models for the data. 

To measure success we recorded overall recall accuracy, (i.e., the 
number of perceptually relevant examples classified as 
perceptually relevant plus the number of perceptually irrelevant 
examples classifies as perceptually irrelevant) and the recall 
accuracy for the perceptually relevant examples. False positives 
(irrelevant shapes classified as relevant) increase the amount of 
data to be processed which is a nuisance factor but less serious 
than false negatives (relevant shapes classified as irrelevant) 
which indicate missing perceptually relevant shapes.   
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For example, for the pair “Train using set1 + test using  set2”, we 
train the classifier with the 435 records in set1 to produce a 
classifier model.  For each of the 306 records in set2, we apply 
this classifier model to the record to produce a class prediction 
(perceptually relevant or perceptually irrelevant).  We can then 
calculate the recall accuracy by counting the number of correct 
predictions and dividing this figure by the number of records in 
the test set.  The set pairs are {train, test}: {set1, set2}, {set2 
set1}, {set3, set4}, {set4, set3}, {set5, set6}, {set6 set5} 

4. RESULTS & ANALYSIS 
The recall accuracy for the four classifiers when run on each of 
the 6 train/test set combinations is listed in Table 3. 

From Table 3, the MLP algorithm has the highest overall recall 
coupled with the highest recall accuracy for perceptually relevant 
and perceptually irrelevant shapes by a considerable margin.  It 
also has consistently high recall.  The regression algorithm 
produces the second highest recall figures with the SVM third 
highest overall.  The Naïve Bayes performs worst except for 
correctly classifying the perceptually irrelevant shapes where it is 
third best.  

It is noted that the size of the training set can have an adverse 
affect on classifier recall accuracy. The MLP performs worst on 
the smallest set2 for training with the largest set1 for testing 
combination and conversely performs best when training on the 
largest set1 and testing with the smallest set2.  The overall recall 
drops from 98% to 94% so the MLP may be adversely affected by 
training set size.  When the SVM trains on the larger set1 and 
classifies the smaller set2 it produces 93% recall accuracy.  
Conversely, when the SVM trains on the smaller set2 and 
classifies the larger set1 the SVM produces 80% recall accuracy. 
However, the SVM suffers its worst performance when training 
with set5 and testing with set6 so we cannot say conclusively 
whether it is adversely affected by training size at this stage.  The 
Naïve Bayes also suffers a performance drop when using the 
smallest training set2 compared with the largest training set1 but 
similarly, Naïve Bayes suffers its worst performance when 
training with set6 and testing with set5 so again, we cannot say 
conclusively whether it is adversely affected by training size at 
this stage.  The regression algorithm does not suffer a significant 
overall performance drop when comparing the largest and 
smallest training sets. 

It is possible to look at the weights in an MLP to see which 
attributes are being used to classify the shapes. Roughness is 
weighted consistently highly (either +ve or –ve).   AspectRatio, 
Stuffedness, AreaRatio, GapScore, Circularity, Eccentricity, 
Ellipticity & Triangularity are generally weighted high.  The 
Fourier descriptors are occasionally weighted highly and the Hu 
moments are generally weighted low.  Roughness indicates how 
convex a shape is.  A high score indicates that the shape fills its 
convex hull and thus the shape is convex.  Conversely, a low 
score indicates a concave shape.  This corresponds with visual 
observations of the results of our experiments: for images 
comprising flood-filled regions in particular, convex shapes tend 
to be perceptually relevant.  Where concave shapes are relevant 
(generally more so for line-based images or thin regions from our 
experiments) the MLP may use a combination of the other 
attributes to achieve the correct classification.  AreaRatio is very 
similar to Roughness so we would not expect both to score highly.  

Circularity, Ellipticity, Triangularity and Stuffedness (with 
AspectRatio closely related to Stuffedness) all define specific 
shapes (circle, ellipse, triangle, and rectangle) and hence their 
applicability varies.  GapScore is often weighted highly indicating 
that shapes with gaps vary in perceptual relevance from shapes 
without gaps in their perimeter. Eccentricity measures the 
regularity of a shape and we would expect regular shapes to be 
more perceptually relevant than irregular shapes.  This hypothesis 
is borne out with the attribute’s relatively high weighting. 

It is interesting to consider the speed of training, as this indicates 
the utility of the method for practical applications. For the 
implementations of the four classifiers used here, the Naïve Bayes 
trains fastest, followed by the SVM and the MLP all of which 
train much faster than the regression program.  For the data set 
combination set6 training and set5 testing, the MLP trains in  2.0 
seconds, the SVM in 0.4 seconds and the Naïve Bayes trains in 
0.3 seconds all running on a 3.4GHz Pentium PC with 2GB RAM 
running Linux.  The regression program takes 40m 24s (2424 
seconds) to complete the three steps of regression training on the 
same data set pair running on a dual 2.8GHz AMD Athlon PC 
with 3GB RAM running MS Windows XP with the regression 
program running on top of MS Excel.  Obviously, we are 
comparing slightly different machines and different operating 
systems (3 C++ algorithms running under Linux on 3.4GHz 
Pentium PC  and one Windows application running on dual 
2.8GHz AMD Athlon PC with MS Windows XP) but the time 
difference between the C++ algorithms and the regression 
algorithm is still significant if speed is the overriding criterion for 
the user. 

5. CONCLUSION 
The work has shown that it is possible to train a classifier to select 
perceptually relevant closed figures from a segmented image, 
effectively capturing the segments that humans see in images. Our 
work has shown that the MLP network can be trained to achieve 
this with 96.4% recall accuracy overall. The MLP has the highest 
recall for the important category: the perceptually relevant 
examples, where it achieves 97.4% accuracy.  It is noted that the 
training time for the MLP is 2 seconds compared to 0.3 seconds 
for the Naïve Bayes which trains fastest.  Although the MLP is 
slower, the training time is still fast.  Therefore, we have 
identified that an MLP with 4 hidden neurons and a single output 
neuron running as the optimum perceptual relevance classifier for 
the perceptual classifier task described in this paper. 

We feel the approach described is very flexible and attained using 
actual human perceptual data.  It is a universal approach 
providing a score of perceptual relevance (global goodness) 
across all shapes regardless of how they are derived.  The 
approach reduces the number of shapes output by the closed shape 
identification algorithm and is a precursor to the matching phase 
of image retrieval.  Classifying the closed shapes and discarding 
perceptually irrelevant shapes reduces the search space during 
image matching and retrieval.  Each image is only represented by 
a sub-section of the candidate shapes output by the closed shape 
algorithm; the shapes classified as perceptually irrelevant are 
removed from the search space.  Reducing the search space 
focuses on human-oriented shapes, speeds further processing 
during image matching and retrieval as fewer shapes need to be 
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processed and reduces the memory overhead of any further 
processing. 

We intend to use the classifier within the PROFI project to 
generate perceptually relevant views of each image.  The closed 
shape identifier produces a set of candidate shapes for each image.  
The classifier then reduces the set of candidates to the set of 
perceptually relevant shapes for that image.  For all images 
combined, these reduced sets of shapes represent the database of 
perceptually relevant shapes for all images.  Using shape 
attributes (such as the 23 attributes detailed in section 3.2, 
topology attributes such as touching and overlap relations and 
position attributes such as the centroid coordinates) to represent 
the shapes as a vector of attributes, the set of shapes for each 
image may be represented as a similarity graph for the image.  In 
this similarity graph, the nodes are shapes and the arcs in the 
graph are the relations (similarity) between the shapes calculated 
using vector distances.  Images (trademarks) may then be matched 
using graph isomorphism matching and attribute matching (vector 
distance) calculation.  The more similar the graphs representing 
two images, the more similar those two images will be.  Thus we 
can calculate the set of trademarks that are most similar to a query 
trademark using graph isomorphism and vector distance 
calculations on the shapes within the images.  Graph isomorphism 
calculations are computationally expensive so by reducing the set 
of shapes representing each trademark by using our perceptual 
relevance classifier, we are minimising the graph sizes and 
minimising the calculation required.  We are also eliminating 
noise (perceptually irrelevant shapes) from the calculation which 
may adversely affect accuracy. 

The methods we have described and the resulting classifier 
models or regression equation are equally applicable to any 
underlying shape identifier algorithm such as region growing 
[11], watershed [12] or closed shape identification [13] providing 
the result of the algorithm may be represented by a list of 
boundary points to calculate the attributes used here.  Obviously, 
other attributes could be incorporated or the attribute set changed 
if, for example fill points were available to allow fill point 
attributes to be used.   
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Table 3 Table listing the recall scores for the four classifiers on each of the six train/test set combinations.  The highest recall score 

for each row is indicated in bold font.  The maximum column indicates the number of records, number of perceptually relevant (1) 

and perceptually irrelevant (0) records in the respective test sets. 

Train/Test  Max. Bayes MLP SVM Reg. 

Set1/set2 Correct 306 276 300 285 257 

 1s correct 130 112 126 118 122 

 0s correct 176 164 174 167 135 

Set2/set1 Correct 435 356 408 349 359 

 1s correct 240 172 218 179 175 

 0s correct 195 184 190 170 184 

Set3/set4 Correct 370 307 362 329 313 

 1s correct 169 147 161 145 159 

 0s correct 201 160 201 184 154 

Set4/set3 Correct 371 306 356 314 339 

 1s correct 169 148 192 166 145 

 0s correct 202 158 164 148 194 

Set5/set6 Correct 376 308 362 300 321 

 1s correct 171 123 161 128 126 

 0s correct 205 185 201 172 195 

Set6/set5 Correct 365 286 355 304 329 

 1s correct 199 130 192 155 169 

 0s correct 166 156 163 149 160 

Overall Correct 2223 1839 2143 1881 1918 

 1s correct 1078 832 1050 891 896 

 0s correct 1145 1007 1093 990 1022 

Overall %ge Correct  82.73% 96.40% 84.62% 86.28% 

 1s correct  77.18% 97.40% 82.65% 83.12% 

 0s correct  87.95% 95.46% 86.46% 89.26% 
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