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Abstract

With ever growing databases containing multimedia data, indexing has become a necessity to avoid a linear search. We propose a
novel technique for indexing multimedia databases in which entries can be represented as graph structures. In our method, the topolog-
ical structure of a graph as well as that of its subgraphs are represented as vectors whose components correspond to the sorted laplacian
eigenvalues of the graph or subgraphs. Given the laplacian spectrum of graph G, we draw from recently developed techniques in the field
of spectral integral variation to generate the laplacian spectrum of graph G + e without computing its eigendecomposition, where G + e is
a graph obtained by adding edge e to graph G. This process improves the performance of the system for generating the subgraph sig-
natures for 1.8% and 6.5% in datasets of size 420 and 1400, respectively. By doing a nearest neighbor search around the query spectra,
similar but not necessarily isomorphic graphs are retrieved. Given a query graph, a voting schema ranks database graphs into an index-
ing hypothesis to which a final matching process can be applied. The novelties of the proposed method come from the powerful repre-
sentation of the graph topology and successfully adopting the concept of spectral integral variation in an indexing algorithm. To examine
the fitness of the new indexing framework, we have performed a number of experiments using an extensive set of recognition trials in the
domain of 2D and 3D object recognition. The experiments, including a comparison with a competing indexing method using two dif-
ferent graph-based object representations, demonstrate both the robustness and efficacy of the overall approach.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction systems. Therefore, an effective and efficient indexing

mechanism is essential to select a small collection of candi-

Shape matching is one of the fundamental problems in
computer vision. In a typical matching problem the objec-
tive is to compute an overall similarity value between an
unknown shape (query) and a model, and to find the corre-
spondences between their feature sets. The similarity value
between two shapes can be used for shape recognition by
using stored exemplars for different shape classes as mod-
els. A linear search of a database, i.e., computing the sim-
ilarity between the query and each database entry and
selecting the closest one, is inefficient for large database
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dates to which the actual matching process is applied.
Criminology, medicine, trademark retrieval, and content-
based image retrieval on the web are only a few examples
of applications which are likely to contain large collections.
For recognition purposes, it is very common to represent
object views by graphs whose nodes correspond to image fea-
tures and whose edges indicate relations between these fea-
tures, e.g., [46,28,51,26,40]. Both nodes and edges may be
labeled by attributes. These graph representations express
many significant object properties such as geometric or hier-
archical structures. Such representations, however, have
drawbacks: matching two graphs is a difficult problem.
Graph matching problems are often formulated as larg-
est isomorphic subgraph problems, for which a rich body
of research exists in the literature, such as pattern recogni-
tion [30,29], chemical structures [37], or computer vision
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[52,23]. This problem has been studied for both theoretical
and practical interests. While it is an open question
whether the detection of graph isomorphism can be solved
in polynomial-time, the problem of subgraph isomorphism
is known to be NP-complete [15]. Although (sub)graph iso-
morphism detection is computationally expensive, some
graph isomorphism detection algorithms with only polyno-
mial-time complexity have been developed for specific
graph classes, e.g., planar graphs [22]. It is also possible
to derive such polynomial-time complexity algorithms for
graphs with certain restrictions [21].

When working with graph structures, indexing is formu-
lated as the problem of efficiently selecting a small set of
database graphs, which share a subgraph with the query.
Several frameworks have been proposed to use (sub)graph
isomorphism algorithms with indexing methods. Shapiro
and Haralick [42] proposed a method to organize similar
graphs in clusters where each cluster is indexed by a repre-
sentative graph. Sossa and Horaud [48] used the coefficients
of the dy-polynomial of the laplacian matrix of a graph to
index into graph datasets. These coefficients, however, are
only unique for small graphs with less than 12 vertices.

One important indexing method is a decision tree
approach. Here, the goal is to hierarchically partition the
database so that the query is first matched to the root.
Depending on the result of this match, the query is then
matched to either the right or the left child of the root. This
process is repeated recursively until a match is found at an
internal node (or leaf), or it exits with a failure indicating
no database graphs are isomorphic to the query. Messmer
and Bunke [32] use this approach to organize the set of all
permutations of the adjacency matrix of database graphs in
a decision tree. At run time, the (sub)graph isomorphisms
from the query to the database graphs are found by a deci-
sion tree traversal. A significant drawback of this method is
its space requirement. All permutations of the adjacency
matrix have to be encoded in decision trees, whose sizes
grow exponentially with the size of the database graph. A
set of pruning techniques is discussed to cut down the space
complexity.

So far, we have only considered the problem of (sub)-
graph isomorphism. However, due to noise, occlusion, or
segmentation errors, (sub)graph isomorphism may not exist
between the query and the database. Furthermore, only a
certain degree of similarity between two graphs may be pres-
ent. The indexing problem, therefore, is reformulated as effi-
ciently retrieving database graphs whose (sub)structure is
similar to the query. Although considerable research has
been devoted to the problem of inexact (or error-tolerant)
graph matching, rather less attention has been paid to this
type of indexing based on graph structures.

Costa and Shapiro [10] present a graph-based indexing
method, where small relational subgraphs are used to effi-
ciently retrieve similar graphs from a large database. An
integrated framework related to the approach reported in
this paper is that of Shokoufandeh et al. [44]. This frame-
work is designed especially for tree structures in which the

sum of the largest eigenvalues of the adjacency matrix for
each subtree of the root form the components of its 6-dimen-
sional vector, where § is the root degree. To account for
occlusion and local deformation, these vectors are also com-
puted for the root of each subtree. At indexing time, each
non-leaf node of the query is represented as such a vector,
and a nearest neighbor search is performed for each vector.
Although effective, by summing up the largest eigenvalues
one loses uniqueness, resulting in less representative graphs
in the vector space. In addition, it is not clear how this
approach can be extended to general graph structures.

One of the primary aspects of graph theory is to derive
the principal properties and structure of graphs from their
graph spectra. In the computer vision and pattern recogni-
tion communities, eigenvalue-based frameworks have been
applied to various problems including shape description
and indexing. Sengupta and Boyer [41] used eigenvalue-
based feature representation of CAD models to capture
their gross characteristics. This representation is used to
partition the database into structurally homogeneous
groups. Shapiro and Brady [43] used eigenvectors of prox-
imity graphs to compute the feature correspondences. Turk
and Pentland [50] proposed an eigenface approach in which
images were represented as linear combinations of a small
set of images computed from a large database. The algo-
rithm was applied to face recognition. Sclaroff and Pent-
land [39] computed the eigenmodels of 2D regions and
used the model coefficients in a linear search of 2D shapes.
However, since the characterizations in this approach are
global, it is not clear how this method performs for retriev-
ing models with local similarities. Some other eigenvalue-
based methods consist of applications such as edge detec-
tion [49], motion estimation [17], and 3D object representa-
tion as 2D images [8].

1.1. Our contributions

In this paper, we propose a novel approach to the graph-
based indexing problem. Instead of using the adjacency
matrix for graph characterization as done by some earlier
work, we characterize our graphs based on the laplacian
spectrum, which is more natural, more important, and more
informative about the input graphs [33]. The definition of a
laplacian matrix along with other graph-theoretical con-
cepts used in this paper is given in the next section. Given
a graph G = (V,E), the sorted eigenvalues of its laplacian
matrix become the components of its signature, an O(|V|)-
dimensional vector. Since the laplacian spectrum is used as
a graph signature without an approximation such as consid-
ering only largest eigenvalues, a high level of uniqueness is
maintained. We will discuss techniques to reduce the cost
for computing such a signature in the framework.

Having established the signatures, the indexing now
amounts to a nearest neighbor search in a model database.
For a query graph and a large graph dataset, we can, there-
fore, formulate the indexing problem as that of fast selec-
tion of candidate graphs whose signatures are close to
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the query signature. This formulation alone cannot support
occlusion or segmentation errors as two graphs may share
similar structures up to only some level. To perform index-
ing locally and thus to encode the topology of subgraphs in
the framework, we adopt a technique analogous to that
used in the decision tree approach [32]. Given the laplacian
spectrum of a principal submatrix B of matrix 4, we draw
on an important theorem from spectral graph theory to
show that our graph characterization can be used to
retrieve similar graphs or subgraphs from large database
systems through a nearest neighbor search.

The local indexing method used in the framework is
effective, but the signature of each subgraph of a graph is
computed individually from its eigendecomposition. Given
the laplacian spectrum of graph G, we use recently devel-
oped techniques in the domain of spectral integral varia-
tion to generate the laplacian spectrum of graph G +e
without the need for computing its eigendecomposition.
To our knowledge, the proposed framework is the first
framework that uses spectral integral variation in an index-
ing algorithm.

Our approach is of particular interest to applications
where the size of the database is large, but the size of each
graph is relatively small (less than around 24 vertices).
Although our method has a similar start-up to [32], it dif-
fers by a number of important factors. First, we use the
laplacian rather than the adjacency matrix for graph char-
acterization. Second, since the permutation-similar matri-
ces result in the same set of sorted eigenvalues, we
consider such laplacian matrices once, avoiding the need
for a high-load compilation process described for this type
of adjacency matrices in [32]. Third, probably the most
important difference is that our method is intended for
retrieving similar database graphs, requiring no significant
graph isomorphism, although the framework can easily be
modified to isomorphism detection.

The rest of the paper is organized as follows. Following
a review of graph-theoretical concepts and preliminaries in
Section 2, we describe our indexing mechanism and its
complexity in Section 3. To avoid computing the signature
of each subgraph individually from its eigendecomposition,
we adopt the concept of spectral integral variation in Sec-
tion 4. After evaluating the framework on two different rec-
ognition domains and performing a comparison of our
approach with a competing indexing algorithm in Section
5, we end the paper with conclusions and our future work
in Section 6.

2. Preliminaries

Before describing our framework, some definitions are
in order. A graph G is a pair (V,E), where V is a finite
set of vertices and E is a set of connections (edges) between
the vertices. The size of a graph is defined as the number of
vertices. An edge e = (u,v) connects two vertices where
u,v € V. A graph G = (V,E) is called edge-weighted if each
edge e € E has a weight w(e) € R. Unweighted graphs are a

special case of weighted graphs, where each of the edges
has weight 1. A graph is simple if it does not contain self-
loops or multiple edges and thus its edge set consists of dis-
tinct pairs. All graphs considered in this paper are simple.
Two graphs G, = (V1,E,) and G, = (V,,E,) are isomor-
phic, if there is a bijection f : V; — V, such that for any
vertex pair u and v € V1, (u,v) € E, iff (f(u),f(v)) € E,.

The adjacency matrix A of a graph G= (V,E) is a
|[V| x |V| matrix whose element with row index u and col-
umn index v is

Au,v) = { 1 if (u,v)'EE
0 otherwise.

Let D(G) be the diagonal matrix of vertex degrees with ele-
ments of D(u,u) =3, ,A(u,v). The matrix L(G)=
D(G) — A(G) is called the laplacian matrix of G." The lapla-
cian matrix is a positive semidefinite and symmetric matrix
with at least one zero eigenvalue. The multiplicity of zero
as an eigenvalue of L(G) is equal to the number of con-
nected components in the graph. This implies that the sec-
ond smallest eigenvalue known as algebraic connectivity is
positive if and only if G is connected. There exist many
important theorems about laplacian matrices and in many
problems in physics and chemistry they play a central role.
The reader is referred to [34,35,31,33] for surveys on this
topic.

The spectrum of a graph’s laplacian matrix is obtained
from its eigendecomposition. Specifically, the eigendecom-
position of a laplacian matrix is L(G) = PAP”, where
A = diag (41, s,...,4yy) is the diagonal matrix with the
eigenvalues in increasing order and P = (p;|p,|...|p,) is
the matrix with the ordered eigenvectors as columns. The
laplacian  spectrum is the set of eigenvalues
{A1,22,..., Ay }. The spectrum is permutation invariant,
i.e., two isomorphic graphs have the same set of sorted eigen-
values. However, the converse is not true, as two graphs that
have the same spectra are not necessarily isomorphic.

Two graphs are called cospectral (or, isospectral) if they
have the same eigenvalues. Previously, Godsil and McKay
[16]and more recently Haemers and Spence [19] have shown
that the laplacian matrix has more representational power
than the adjacency matrix, in terms of resulting in fewer
cospectral graphs. According to the results given in [19], of
more than a billion graphs with 11 vertices characterized
by the adjacency matrix, approximately 21% is cospectral,
while this fraction is only 9% for the laplacian matrix. As spe-
cific graph classes, trees were also investigated for cospectral-
ity by Zhu and Wilson [55]. The authors report that out of
more than two million trees with 21 vertices, 21.3% of them
do not have a unique adjacency spectrum. With the laplacian
spectrum, this ratio decreases to 0.05% only.

We have two reasons for constructing the graph charac-
terizations using the laplacian spectrum. The first one

! The laplacian matrix is also called Kirchhoff matrix or the matrix of
admittance in the literature.
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comes from the cospectrality studies given above. Overall,
these studies show that the laplacian spectrum is more rep-
resentative and more informative than the adjacency spec-
trum. The second, probably the most important reason
stems from the fact that the laplacian spectrum is closely
related to important graph invariants. Thus, it encodes
important information about graph structures such as the
diameter, mean distance, algebraic connectivity, degree dis-
tribution of graph nodes, graph size, independence num-
ber, isoperimetric number, genus, and expanding
properties [34,35,14,36,31,33]. Using these relations, we
compute the structural similarity between two graphs
based on the closeness of their laplacian spectra as
described in the next section.

3. Encoding the graph structure for indexing
3.1. Indexing formulation

Given a query and a large database, our objective in an
indexing mechanism is to efficiently retrieve a small set of
candidates, which share topological similarity with the
query or one of its subgraphs. We assume that the database
graphs are known in advance and the query graph is given
at run time only. If the graph has a rich structure in terms
of diameter and branching factor, a novel encoding of its
topology can be used as an index into a large graph data-
base. In our framework, we encode the topology of a graph
through the laplacian spectrum. Specifically, sorted eigen-
values of the laplacian matrix are assigned to the graph
as its signature. To compute the similarity between two
graphs, we compute the Euclidean distance between their
signatures, which is inversely proportional to the structural
similarity of the graphs. For a given query, retrieving sim-
ilar graphs can be reduced to a nearest neighbor search
among a set of points.

Unfortunately, the above formulation cannot support
occlusion or segmentation errors: two graphs may share
similar structures up to only some level. Although adding
or removing graph structure changes the laplacian spec-
trum, the spectrum of the subgraphs that survive such
alteration will not be affected. Therefore, our indexing
mechanism cannot depend on the signature of the whole
graph only. Instead, we will combine the signatures of
the subgraphs with our indexing mechanism.

3.2. Local indexing

Let G = (V,E) be a graph and let G’ be a graph obtained
from G by adding a new edge ¢’ such that ¢ € E. Then the
following theorem, known as the interlacing theorem,
relates the laplacian spectrum of both graphs.?

2 This theorem is obtained by Courant-Weyl (see Theorem 2.1 in [11]).
The reader may also refer to [18].

Theorem 1. The eigenvalues of G and G’ interlace:
0=2(G)=4(G) < /(G) < (G) ... < ,(G) < L(G).

In addition, it is known that )| ,(4(G') — 4(G)) =2
[1]. Therefore, at least one inequality is strict. Overall this
theorem implies the following. Assume that we are given
a pair of isomorphic graphs g, and g,. If we construct G,
and G, out of g, and g, by adding different edges to each
of them, one at a time, the laplacian spectra of G; and
G, become proportionally less similar. As a result, the sim-
ilarity between the signatures of G; and G, may not reflect
the similarity between the signatures of their subgraphs g,
and g,. Therefore, constructing the indexing mechanism
based on graph signatures is too weak. An ideal indexing
framework should, in fact, select candidate database ele-
ments based on both local and global similarities. To
account for local as well as global information in our
framework, we will adopt the following method analogous
to that used in the decision tree approach [32].

For a given database graph G = (V, E), rather than stor-
ing its signature in the system only, we compute the signa-
tures of each subgraph of G in our algorithm. In this
process, we gradually increase the size of the subgraphs.
Since the sorted eigenvalues are invariant under consistent
reorderings of the graph’s vertices, it is sufficient to repre-
sent the spectrum of permutation-similar matrices once.
This property avoids the need for a high-load compilation
process described for adjacency matrices in the decision
tree approach.

Associated with each signature in the system is a pointer
to the corresponding graph or subgraph in the database. In
case a signature represents more than one graph, one poin-
ter is created from the signature to each graph. At runtime,
we first generate the signature of each subgraph of the
query. Given a query signature s,, we then retrieve its near-
est neighbors of the same size from the database through a
nearest neighbor search (see Fig. 1). Each neighbor of s,
retrieved from the database gets a vote whose value is
inversely proportional to the distance from s,. Thus, as a
result, each signature of the query generates a set of votes.
Moreover, we weigh the votes according to the size of the
subgraphs corresponding to the signatures, i.c., the bigger
the size, the more weight the vote receives. To collect these
votes, we will use the following strategy.

Let S, = {sg1,...,8m} be the set of query signatures.
For a particular signature s, € S, let Ny, = {n,...,m}
be the set of elements returned by the nearest neighbor
search and let |s,;| denote the size of its corresponding sub-
graph. (|s,;| = |n;] for j=1,..., k). We compute the weight
of the vote between s,; and a signature s, corresponding to
a database (sub)graph as follows:

|Sqi‘ .
——if 54 € N,
w — ) Vtllsgi—salla di € Noyis
SqiSdi
0

(1)

otherwise.
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Fig. 1. Retrieving similar graphs. For graphs given in (a), its subgraphs are constructed in (b). A signature is computed for each subgraph in (c). Given a
signature, retrieving its similar graphs from a large database is formulated as a nearest neighbor search as shown in (d).

Given a query G,= (V,,E,) and a database graph
G, = (Va4,E,) of size |V,| and |V,|, respectively, let S’; de-
note the set of signatures for subgraphs of size k of the
query graph, and let S’; be this set for the database graph.
For certain size k, we first determine the similarity between
the sets S and S} using the Hausdorff distance, which has
been successfully used in several problems, e.g., [38,24,25].
One advantage of using this distance measure comes from
the fact that the Hausdorff distance does not allow for
comparing portions of the sets S; and S¥, i.e., the similarity
between each signature pair (s,,ss;), where s, € S’; and
sq € S4 is taken into account. More specifically, the weight
of the votes between signature sets S’; and Sf, is computed
as follows:

h(Si;vSS) = max{mink{quder}}' (2)

sqiESg Sdi€Sy

However, since h(S’;,S’;) is not symmetric, the average of
h(S;,S4) and h(Sy,Sh) is taken:

H (S, Sq) = (h(Sq,Sg) + h(Sg, ;) /2- (3)
The total weight of the votes accounting for both local and

global similarities is then computed as:

min(|Vy|,[Val)

Y H(S)S). (4)

=1

WSqS,[ =

After performing a nearest neighbor search around the
query signatures, we compute the weights of the votes be-
tween the query and the database graphs having at least
one signature as the nearest neighbor of the query. We then
sort the database graphs based on these weights. In this
process, we only add the sufficiently high-support database
graphs to the indexing hypothesis. Since a small number of
structurally different graphs may also share the same lapla-
cian spectrum, each graph in the hypothesis should still be
verified by some matching algorithm. Despite the fact that
such graphs may exist in the indexing hypothesis, the num-
ber of them is very small. In addition, based on Theorem 1,

not only do isomorphic graphs share the same signature,
non-isomorphic but similar graphs or subgraphs have close
signatures in the vector space. The database, therefore, can
be pruned without losing structurally similar graphs. The
complexity of the algorithm is presented in the next section.

3.3. Complexity analysis

Let us first analyze the computational complexity of the
signature generation for the database graphs, which is a
preprocessing step performed offline. Let n, denote the
maximum number of vertices in a database graph. Given
a single graph, the total number of its subgraphs of size ¢

is O ( < ’:d ) ) . Assume that there are m graphs in the data-

base, the total number of signatures generated by the
framework is bounded by

m X Z (?d> = O(m x 2™).
=0

Notice, however that the actual number of subgraphs
whose signatures are represented in the system is strictly

n . . .
less than m x S 4 )| since our signature is permuta-
t=0 t

tion invariant. In addition, subgraphs of size 2 and 3 are
considered too small to represent a significant part of the
original image for our experiments presented in Section
5. We generate signatures of subgraphs starting from size
4 in the framework.

On retrieval, we perform an approximate nearest neigh-
bor search for each query signature, using a balanced-box
decomposition tree (BBD-tree) as introduced by Arya
et al. [2]. Given any positive real ¢, a signature is an
(1 + e)-approximate nearest neighbor of the query signa-
ture s, if its distance from s, is within a relative error bound
of € from the true nearest neighbor. More generally, for
1 <k<n, a kth (1+ ¢)-approximate nearest neighbor
of s, is a signature whose relative error from the true kth
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nearest neighbor is €, where 7 is the database size. Given an
integer k > 1, (1 + ¢)-approximations to the k nearest
neighbors of s, can be found using a BBD-tree in
O(kdlogn) time, where d is the dimension of the search
space, and »n the number of signatures in this search space.

Thus, for a query subgraph of size ¢, the running time 7',
of a k-nearest neighbor search using the BBD-tree is

-ofums (o2 (7))

For each complete query of size of n,, the database is
queried with its O( :"’0(?">) subgraph signatures.

Therefore, the total running time for a complete query ¢
is

qu nq
T, = 0(1202 (t )T,).
4. More efficient indexing through spectral integral variation

The local indexing procedure described above requires
individual computation of the laplacian spectrum for each
subgraph from its eigendecomposition. Although for data-
base graphs known a priori this process is performed off-
line, in applications where new database entries are being
inserted frequently, this step plays an important role in
the efficiency of the whole system. In this section, we draw
on recent-developed techniques from the domain of spec-
tral integral variation to avoid the individual computation
of the laplacian spectrum for each subgraph from its eig-
endecomposition. Specifically, we will study the effect on
the laplacian spectrum when an edge is added into graph
G = (V,E). Let G+ e be a graph obtained by adding an
edge e = (u,v) into G such that {u,v} € V and e ¢ E. Our
interest in this topic is motivated by its ability to identify
the changed eigenvalues of graph G, and therefore to gen-
erate the laplacian spectrum of graph G + e without the
need for computing its eigendecomposition. Before we
focus on this topic, let us first reconsider Theorem 1, which
shows that when an edge is added into the graph, none of
its laplacian eigenvalues can decrease, while the trace of the
laplacian matrix increases by 2. This important observation
implies that given the laplacian spectrum of G, one can esti-
mate the ranges of eigenvalues for G + e. The concept of
spectral integral variation, however, provides more
information.

It is shown in [47] that if an edge is added to a graph and
the laplacian spectrum changes by integer quantities, there
can only be two possibilities: either one eigenvalue
increases by 2 (and n — 1 eigenvalues remain fixed) or
two eigenvalues increase by 1 (and n — 2 eigenvalues
remain fixed). These two cases are called spectral integral
variation in one place and spectral integral variation in
two places, respectively. The following lemma characterizes
these two possible situations.

Lemma 1. Let G = (V,E) be a graph with |V| = n vertices
and I' Gy = (A1, /2, .., %) be its laplacian spectrum. The
spectral integral variation of G by adding an edge e ¢ E
occurs only in the following two ways:

(1) The spectral integral variation occurs in one place, and

thus

F(G+e) = (F(G) \ ;Lk) U {/lk + 2}, where k € {1,2, R ,n}.
(2) The spectral integral variation occurs in two places,

and thus

TGy = (Fie) \ { ks 2}) ULk + 1,4, + 1},

where k,1 € {1,2,...,n} and k # I.

The proof for this lemma is given by Yizheng [53]. Parts
(a) and (b) of Fig. 2 show two graphs where adding an edge
results in spectral integral variation in one and two places,
respectively.

In our framework, we detect the changed eigenvalue(s)
when spectral integral variation occurs in both one and
two places using the theorems given below. This allows
us to generate the laplacian spectrum of G + e given that
of G in these cases. In a somewhat related direction, there
exists some work on characterizing graphs stating that
when an edge is added, (one of) the changed eigenvalue is
the algebraic connectivity [27,5]. Recall that the algebraic
connectivity of a graph is defined as the second smallest
laplacian eigenvalue.

Let G = (V,E) be a graph with |V| =n vertices. For
ueV, define Nu)={veV:(uv)cE}. Assume that
e = (u,v) is added to G = (V,E) such that e ¢ E. The fol-
lowing theorems characterize and identify the changed

<<

0,2,2,3,5} {0,1,1,1,1,3,7}

<

{0,2,2,5,5} {0,1,1,1,2,4,7}

Fig. 2. Spectral integral variation in one and two places are shown in (a)
and (b), respectively. Bottom graphs are formed by adding one edge to the
graphs shown at the top. The laplacian spectrum is written below each
graph. Observe that while only one eigenvalue increases by 2 in (a), two
eigenvalues increase by 1 in (b).
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laplacian eigenvalue(s) when spectral integral variation
occurs in one and two places, respectively. Theorem 2
appears in [47], while Theorem 3 appears in [27].

Theorem 2. N(u) = N(v) if and only if the spectrum of L(G)
overlaps the spectrum of L(G + e) in n — 1 places. Moreover,
the laplacian eigenvalue of G that increases by 2 is given by
the degree of vertex u (or, that of vertex v) in this case.

For the following theorem, suppose that the degrees of
vertices u and v are shown by d, and d,, respectively, and
let ¢ denote the number of vertices that are adjacent to both
vertex u and vertex v. Without loss of generality, suppose
also that d, > d,. Furthermore, let 1,0, denote the x x 1
matrices whose entries are all 1,0, respectively, and let
1/,0" denote their transposes.

Theorem 3. Let laplacian matrix L of graph G be given by
rd, 0 —18 00 —1L 0
0o 4 0 -1 -1 0
=1, 0, Ly Lo Ly Ly
0, L. Ly Ln Ly Ly
=1, =1, Ly Ln Ly Ly
0 Oy Ly Ly Lz Lyl

where the blocks 11, /33, [33, L4s are of sizes d, — t,d, — 1,1,
and n — 2 —d, — d, + ¢, respectively. Spectral integral var-
iation occurs in two places if and only if the following con-
ditions hold:

Lyl = Ll = (d, + 1)1, (5)
Lyl — Lyl = —(d, + 1)1, (6)
Lyl — Lyl = —(d, — d)1,, (7)
Lal, — Lpl, = 0. (8)

In the case that conditions (5)—(8) are satisfied, then the
two eigenvalues of L that increase by 1 are

s d,+d,+1—+/(d,+d, +1)2—-4(dd, +1)
1:

3 9)
and
d,+d,+1+/(d,+d,+1)2—-4(d.d,+1)
Ay = 3 . (10)

Given the laplacian spectrum for graph G = (V,E), when
an edge e is added to construct G + e, we first check if
the laplacian spectrum of G+ e can be generated using
the theorems given above. In case Theorem 2 or Theorem
3 holds, the laplacian eigenvalues of G + e overlap those
of Gin |V| —1 and |V| — 2 places, respectively. These the-
orems also enable us to find the changed eigenvalue(s).
After presenting the concept of spectral integral variation,
we now describe the signature generation process per-
formed offline for each given database graph.

Suppose that the minimum number of edges in a sub-
graph for which we compute the signature is k. Given a
database graph G = (V,E), we first create its subgraph G

with |V] vertices and k edges and compute its laplacian
eigenvalues from its eigendecomposition. Since the second
smallest laplacian eigenvalue is positive if and only if the
graph is connected and the multiplicity of zero as a lapla-
cian eigenvalue reflects the number of connected compo-
nents, only the positive eigenvalues of G are used as the
signature. Next, when we add an edge to G, we check
whether spectral integral variation occurs using Theorems
2 or 3 and if so, we generate the eigenvalues without com-
puting the eigendecomposition. We then repeat this process
and consider all subgraphs until the whole graph is con-
structed. At run time, we also apply the same procedure
to construct the signatures for query graphs. The algorithm
is shown in Fig. 3. Although the above formulation enables
us to identify the changed laplacian eigenvalues when they
are increased by integer quantities, our empirical results
show that it speeds up the signature generation step for
database with 1440 graphs known a priori by 6.5%. We will
present our report on this part in Section 5.

Revisiting the key new features of our approach, the
encoding of a graph’s structure captures its local topology,
thus allowing for its use in the case of occlusion and seg-
mentation errors. Furthermore, the signature of a graph
is invariant under the reorderings of its vertices. This, in
turn, allows us to compare the signatures of a large number
of graphs without solving the computationally expensive
correspondence problem between their vertices. Since we
generate signatures of each subgraph to account for the
local topology, there is a high computational complexity
associated with the generation of the signatures for the
database graphs, as shown in the previous section. This
complexity, however, can be reduced by considering sub-
graphs starting from some predefined size and in practice
it is further lowered by employing the concept of spectral
integral variation.

5. Experiments

To examine the fitness of the new indexing framework,
we have performed a number of experiments using an
extensive set of recognition trials in the domain of 2D

Input: G = (V, E), G = (V, E),and T,
Output: The laplacian spectrum I' © for every subgraph GofG

Algorithm Generate Spectra (G = (V, E), G = (V, E), L)
if £ == E then terminate
for every subgraph G = (V, E) of G = (V, E), where
E=FEU{e:ecE,e¢ F'}
if spectral integral variation occurs in one place (Theorem 2) then
generate [’ © according to Theorem 2
else if spectral integral variation occurs in two places (Theorem 3) then
generate I ) according to Theorem 3
else compute I ;) from its eigendecomposition
endfor
call Generate Spectra (G = (V, E), G = (V, E), L)
end

Fig. 3. Generating laplacian spectra through spectral integral variation.

doi:10.1016/j.cviu.2007.09.012

Please cite this article in press as: M.F. Demirci et al., Indexing through laplacian spectra, Comput. Vis. Image Understand. (2008),




8 M.F. Demirci et al. | Computer Vision and Image Understanding xxx (2008) xxx—xxx

and 3D object recognition. The experiments, including a
comparison with a competing indexing method using two
different graph-based object representations and the results
for a set of occluded queries, are presented below. We first
perform our experiments using silhouettes. For a given
shape, its silhouette is represented by an undirected shock
graph [46]. The graph is constructed from the discrete skel-
eton using the method described in [13]. To summarize this
process, a shock point p on the discrete skeleton is labeled
by a 3-dimensional vector v(p) = (x,y,r), where (x,y) are
the Euclidean coordinates and r is the radius of the maxi-
mal bitangent circle centered at the point. Each shock point
becomes a node in the graph and edges connect nearby
shock points. An illustration of this procedure is given in
Fig. 4, where the left portion shows an input image taken
from the database, while the right portion presents the con-
structed shock graph superimposed on top of the image.

We used the MPEG-7 dataset CE-Shape-1 part B for
this representation type. The MPEG-7 database consists
of 70 classes and 20 shapes per class. The top of Fig. 5
shows a few sample classes, while the bottom of the figure
presents different shapes taken from a particular class.

We also conduct our experiments in the domain of 3D
object recognition using Reeb graphs. These graph repre-
sentations allow for topological properties to be repre-
sented in a coarse sense. Let /: S — R be a real-valued
function on surface S. The Reeb quotient space is defined
by the equivalence relation ~  given  by:
(2.£(2) ~ (3./()) for w7 €SIl f(z)= /() and a7y
are in the same connected component of f~!'(f(«)). This
means two points («,f (o)) and (y,f(y)) are represented
as the same node in the Reeb graph if values of f are the
same and they belong to the same connected component
of the inverse image of f(«) (or, equivalently f(y)). The
Reeb quotient space is coded in a Reeb graph such that
the vertices represent critical points of function f, while
the edges show the connections between them. See
[3,20,9,6,7] for details. The right of Fig. 6 shows a Reeb
graph constructed for the image shown in the left.

The second database used in the experiments consists of
Reeb graphs constructed for the McGill 3D Shape Bench-
mark [54]. The database consists of 420 objects classified in
19 classes. Fig. 7 shows representative views of objects
from the database.

Fig. 4. Left: a view of a bat. Right: the shock graph constructed from the
medial axis and superimposed on the left image.

A 1N B
Raodwn

Fig. 5. Sample images of the MPEG-7 database are shown in the top row.
The bottom row represents a set of different shapes of a particular class
from the database.

Fig. 6. The Reeb graph constructed for the object on the left is shown on
the right.

Fig. 7. Views of sample objects from the McGill 3D shape Benchmark.

We first represent each object in each database as a
graph. Given a graph, we compute the signatures for each
of its subgraphs and populate the resulting signatures in the
vector space. In our experimental setup, we applied the fol-
lowing leave-one-out procedure to the datasets to evaluate
the framework. We initially remove the first graph from the
database and use it as a query for the remaining database
graphs. The graph is then put back in the database, and
the procedure is repeated with the second graph from the
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database, etc., until all database graphs have been used as a
query.

There exist several performance measures to assess the
quality of a retrieval system or indexing mechanism. Preci-
sion and recall are two well-known examples. In some
applications high precision is necessary, meaning that the
relevant items that are returned must be at the top of the
ranking. In some other applications, however, high recall
is preferred, meaning that false negatives are to be avoided
(the returned result must contain all or the most relevant
objects). A good indexing system should, in fact, perform
well according to both of these two measures. We con-
ducted two sets of experiments to cover both scenarios.
In the first experiment, the class of the query should be
determined quickly (best match must appear high in the
ranking). In the second experiment, all the objects belong-
ing to the query class should be returned in a small candi-
date set.

For each query, the database graphs are ranked in
decreasing order of vote weights in these experiments.
Here, we consider the top highest-weight candidates. We
say that our indexing system is effective, if at least one
graph belonging to the same class as the query is among
such candidates. A qualitative measure, therefore, should
be based on the smallest size of the candidate list contain-
ing one image from the query class. According to the
results of this experiment, in 37.3% of the cases, the high-
est-weight database graph belongs to the correct shape
class for shock graphs and this ratio is 29.6% for Reeb
graphs. Moreover, the average position of the closest
matching graph among the highest-weight candidates is
7.4 and 4.3 for shock and Reeb graphs, respectively. In
addition, the worst position of the closest matching graph
is 12 for shock graphs, while this number is 9 for Reeb
graphs. These results present that to determine the correct
class of the query, more than 99% and 97% of shock and
Reeb graph datasets can be pruned by our indexing
mechanism.

While the previous evaluation method is suitable for
classification tasks, in some retrieval applications, however,

Sheck

it is a prerequisite to retrieve all images from the database
that belong to the query class. In the second experiment,
the system’s performance is evaluated by computing the
total number of retrieved images that is necessary to
retrieve the entire query class (maximum minimal scope).
Our results show that the first 134 of the candidate return
set always contain all the graphs belonging to the query
class for shock graphs; this number is 54 for Reeb graphs.
This indicates that for this task our framework prunes
more than 90% and 87% of the shock and Reeb graph data-
sets, respectively. In other words, the recall in each dataset
is 100% if the scope is set to the first 10% and 13% of the
sorted candidate models for shock and Reeb graphs,
respectively. In Fig. 8, we show percentage recall values
for various scopes for shock and Reeb graph datasets.
The experimental results presented above clearly show
the efficiency of the proposed indexing framework using
different graph-based object representations. We now com-
pare the performance of our method to other indexing
frameworks on the same datasets. For this purpose, we first
compare our results to that of an indexing system in which
the graph signatures are generated using the eigenvalues for
adjacency matrices. The experiments are identical to the
ones described above. The results along with our scores
are shown in Table 1, and reveal that our indexing frame-
work outperforms the indexing system with adjacency
eigenvalues in all criteria mentioned above. These results
confirm that graph characterizations through laplacian
matrices are more powerful and more informative than
that of adjacency matrices. Representing graphs by lapla-
cian eigenvalues, therefore, is more effective than that by
adjacency eigenvalues. Additionally, we also compare our
indexing framework to the one presented in [44]. This
indexing algorithm was used in [54] on a subset of the
McGill dataset with the object parts represented by direc-
ted acyclic graphs (DAG) through medial surfaces [45].
The subset of the McGill dataset used in this experiment
includes a total of 320 exemplars taken from several object
classes (hands, humans, teddy bears, glasses, pliers, tables,
chairs, cups, airplanes, birds, dolphins, dinosaurs, four-leg-
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Fig. 8. Percentage recall values for various top ranked highest-weight candidate graphs for shock graphs of MPEG-7 and Reeb graphs of McGill datasets.
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Table 1

Results for indexing system constructed using eigenvalues for laplacian and adjacency matrices

Criteria HW (%) AP WP MMS PC (%) PI (%)
Shock graphs-laplacian 37.3 7.4 12 137 99 90
Reeb graphs—laplacian 29.6 43 9 54 97 87
Shock graphs—adjacency 18 19.1 23 257 97 82
Reeb graphs-adjacency 17.3 10.2 22 92 94 78

HW, percentage of highest-weighted graph belonging to the same class as the query; AP, average position of the closest matching graph from the query
class; WP, worst position of the closest matching graph from the query class; MSS, maximum minimal scope; PC, percentage of database that can be
pruned to determine the right query class; PI, percentage of database that can be pruned to retrieve all instances of the query.

ged animals, and fish). To be consistent with the test in [54],
we also merge the categories ‘“four-legged” and “dino-
saurs” into a broader class, “four-limbs”. The results
reported in [54] indicate that on average 70% of the models
that are in the same class as the query are in the top 80
(25% of 320). Moreover, for 9 out of these 13 object classes,
all instances of the query are in the top 80. Our results, on
the other hand, show that 100% of the query classes are
always in the top 48 (15% of 320). The improvement clearly
demonstrates the better efficacy obtained by the proposed
indexing framework. We believe that the improvement is
due to (1) the more powerful representation of laplacian
matrices, (2) the more effective signature construction by
our algorithm, i.e., low loss of uniqueness in the signature,
and (3) the better way of encoding local topology.

Our next set of experiments deals with measuring the
time efficiency of the indexing framework when spectral
integral variation is used during the signature generation
for database graphs. Although these signatures are com-
puted offline, for dynamic datasets where a new graph is
likely to be added later, the time we spent in this process
plays an important role. For each of the datasets, we gen-
erate graph signatures with and without spectral integral
variation and measure the time taken in each case. We
should note here that involving spectral integral variation
in the framework does not change the effectiveness of the
indexing system. According to the results, we observe that
47.3 and 115.8 min were spent to generate all subgraphs to
be represented in the vector space for Reeb and shock
graph datasets on an Intel(R) Pentium(R) 4 CPU
3.00 GHz computer. After involving spectral integral vari-
ation in the framework, the time we spent in this process
decreases to 45.5 and 108.3 min, respectively. These results
indicate that 1.8% and 6.5% time improvements are gained
with spectral integral variation for these two datasets. In
addition, our experiments show that when a new edge is
added to a graph, spectral integral variation occurs in
6.1% and 21.4% of the cases for Reeb and Shock graph
datasets. Therefore, the laplacian spectrum of the new
graph is generated using the theorems given in Section 4.
Although the experiments present that the larger dataset
results in better time improvement, the overall time
improvement of the framework depends on the percentage
of the case in which spectral integral variation occurs.
Balinska et al. [4] present an important survey on integral
graphs (graphs whose adjacency spectrum consists entirely

of integers) and laplacian integral graphs (graphs whose
laplacian spectrum consists entirely of integers). The
authors observe that such graphs can be found in all classes
of graphs and among graphs of all orders.

Finally, to evaluate the fitness of our approach for deal-
ing with occlusion in images, we generated two sets of
occluded scenes, each with two images. In the first set, there
are 14 occluded scenes in which both images were selected
from different classes in the MPEG-7 dataset, whereas in
the second set there are 8 scenes where only one image
was taken from the MPEG-7. In each scene, one shape
occludes the other to a certain extent. The percentage of
the occlusion in the first set varies from 2% to 16%, with
on average 6.0%. In the second set, the MPEG-7 image is
occluded for 12% to 31%, with on average 21.8%. Each
of these new occluded scenes was used as a query against
the complete database. We define our indexing schema to
be effective if one of the query shapes appears in the highest
vote-weight candidates. The results of these first and sec-
ond sets of the occluded scenes are presented in Figs. 9
and 10, respectively. In each figure, the left column shows
the occluded query images and the top ten candidates
sorted by weight from left to right appear in each row.
The average position of the closest shape belonging to
the class of either of the query shapes was recorded as
1.7 for the first set. This number was 2.0 for the second
set. We should point out that our signatures represent
topological structures. Thus, images from different classes
but with similar topologies may be assigned high weights.
To give an example, consider the top row of Fig. 9, where
the query consists of occluded shapes of a spoon and pen-
cil. While neither a spoon nor a pencil is similar to a but-
terfly, the current combination of them in the query
becomes similar to the butterfly retrieved as the highest
rank. Shapes belonging to different classes, therefore,
may be ranked high in the candidate list.

It should be noted that both shock and Reeb graph
experiments can be considered as worst-case for two rea-
sons. First, one may argue that the MPEG-7 and McGill
datasets are not the ideal testbeds for an indexing algo-
rithm. Some classes (especially in MPEG-7) are very close
to each other (such as ten different device classes) and they
can, in fact, be grouped into a broader class. As a result,
performing such a grouping operation will improve the
overall quality of the framework. Second, since our signa-
tures are constructed based on graph topology, evaluating
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Fig. 9. Results of occlusion experiments where two images in each occluded scene are selected from different classes of the MPEG-7 dataset. The leftmost
column shows the occluded query scenes for each row, while the top ten ranked candidate models are shown on the right, in the decreasing order of weight.
An image inside a box indicates that it belongs to the class of one of the query shapes. Images belonging to different classes but are topologically similar to
the query are ranked high in the candidate list.

these results such that the graph topology is taken into con- by a matching algorithm, which takes into account the
sideration would yield even better performance. Thus, in  topology, will produce even better scores.

addition to checking if the shapes corresponding to the

query and the highest-weight candidate graphs belong to 6. Conclusions and future work

the same object class, we might also consider the possibility

that two graphs from two different object classes may, in In this paper, we have proposed a novel, graph-based
fact, be close in terms of their topologies. We expect that  indexing method using the eigenvalue characterization of
the evaluation of our results using a distance matrix created  laplacian matrices. The sorted eigenvalues of the laplacian
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Fig. 10. Results of occlusion experiments where only one of the two images in each occluded scene is selected from the MPEG-7 dataset. The leftmost
column shows the occluded query scenes for each row, while the top ten ranked candidate models are shown on the right, in the decreasing order of weight.
An image inside a box indicates that it belongs to the class of the query shape taken from the MPEG-7. Topologically similar images to the query are also

ranked high in the candidate list.

matrix of a graph G = (V, E) become the components of an
O(]¥7])-dimensional vector. A nearest neighbor search
around this vector returns graphs that are similar to G.
This implies that no graph isomorphism is required; our
method retrieves those graphs that are similar in terms of
their topologies. To account for partial similarities, we cre-
ate signatures for subgraphs of G. We draw from recently
developed techniques in the field of spectral integral varia-
tions to overcome the problem of computing the laplacian
spectrum for every subgraph individually from its
eigendecomposition.

By using the laplacian spectrum as a signature, we cap-
ture the graph topology to a large extent. The signature of
a graph is invariant under the reorderings of its vertices.
This, in turn, allows us to compare the signatures of a large
number of graphs without solving the computationally
expensive correspondence problem between their vertices.
Although determining graphs that can uniquely be defined
by their graph spectra is a difficult problem [12], we showed
in this paper that representing graphs by their laplacian
spectra is more discriminating than that by adjacency
spectra.

Our framework can index any multimedia database
where objects can be represented as graphs. We have suc-

cessfully evaluated the approach on several databases using
two different graph-based object representations. More-
over, the approach compares favorably to a leading index-
ing algorithm. We also demonstrated the robustness of the
proposed framework on a set of occlusion experiments.

An increasing number of applications use indexing sys-
tems for fast selection of candidate elements. Although
we applied our method to shape indexing in this paper,
we will test the framework to some other applications with
a particular interest to layout indexing. In a typical layout
indexing problem, a query and a set of database images,
each with multiple shapes, are given. For a given query
image, one would like to efficiently retrieve images, which
not only contain similar shapes to those in the query, but
similar layouts as well. Extension of our method to both
shape and layout indexing in a unified framework is one
of our interests in the future.

Additionally, we plan to extend our work in a number of
ways. We will first incorporate geometric information in
the indexing system. Thus, both geometric and topological
similarities will be taken into account during the process of
fast candidate selection. We believe that this important
addition will make the whole system more effective. Rather
than evaluating our results using the classification per-
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formed on the original dataset, we will use different sets of
existing matching algorithms and measure the fitness of the
framework with respect to these matching results. In addi-
tion, we plan to conduct a more comprehensive compari-
son of our approach to more leading indexing
algorithms, including a test regarding the time efficiency
of each system. Since our framework computes a proper
topological similarity between graph pairs, one of our
future goals is also to design a matching approach based
on a similar idea. We will not only compute the similarity
value between graphs, but also find the node correspon-
dences using both topology and geometry.
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